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Surface=2-manifold

Representation:
triangle mesh

Find the (u,v)
parameterization
® of M




The global parameterization problem

Global Parameterization: continuous and
piecewise linear isomorphism between
the original surface and a planar region.

The global parameterization problem

@ is uniquely determined by its values
on the vertices of M.
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Classification and computation of polygonal
schema of arbitrary surfaces.

e

Surface approximation and sampling
(e.g., remeshing, texture mappmg,
compression, etc.).
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M. Floater. Parameterization and smooth approximation of surface triangulations. CAD
1997.




Most techniques vary on

v the distortion: they consider different
definitions of energy functionals based on
lengths, angles, and area (= they mimic
isometric, conformal, and area-preserving
mappings);

v the numerical methods to find the “optimal’:

v'conjugate gradient for linear systems;
v gradient descent for non-linear energies.

DESBRUNOT1, LEE?8; SHEFFEROO, HORMANN99
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Parameterization of 0-genus surfaces

Proposition. Given a bordered 0-genus
triangulated surface M with k boundary
components, it is always possible to:
v map it onto a planar domain with k
convex boundary components;
v’ to join them in linear time thus reducing
M to a disc-like surface M*;
v’ to have link paths among boundary
components “independent” of the mesh
connectivity and of class C2.

G. Patane, M. Spagnuolo, B. Falcidieno. Para-Graph: Graph-based Parameterization of
Triangle Meshes with Arbitrary Genus. Computer Graphics Forum, 23-4, pp. 783-797, 2004.

Parameterization of 0-genus surfaces

v’ Select one boundary component on M,
e.g. the longer one 7}/,

v’ parameterize M w.r.t. V15

v find the cut [ of minimal length which
joins 3 to the closest internal boundary;




v iteratively apply the previous step (k-
1)-times thus converting M to a disc-
like surface M*.
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Cut characterization

Working on the parameter domain instead of M:

v no check of self-intersections among link
paths;

v no use of approximated geodesic path 2 the
cut is independent of the mesh connectivity;

v’ stable computation in O(n) time;

v flexibility on the cut selection;

v useful for approaching the global
parameterization problem of bordered
surfaces with arbitrary genus.
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Generalization: how to deal with
surfaces of arbitrary genus and boundary
components?

[Ni et al., SIGGRAPH 2004] [Steiner et al., SM2004]  [Gu et al., SGP 2003]

General & open problems:

cut smoothness;

bordered surface analysis;
simple approach;

flexibility <—-> a family of cut
graphs;
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Global parameterization of surfaces

v X.Ni, M. Garland, J. Hart. Fair Morse Functions for Extracting
the Topological Structure of a Surface Mesh, SIGGRAPH 2004.

v D. Steiner, A. Fischer. Planar Parameterization for Closed 2-
Manifold Genus-1 Meshes, ACM SM2004.

v X.Gu,S., Yau. Global Conformal Surface Parameterization,
ACM SGP 2003.

v' J. Erickson, S. Har-Peled. Optimally Cutting a Surface into a
Disk, ACM SoCG 2002.

v' D. Steiner, A. Fischer. Cutting 3D Freeform Objects with Genus-
n into Single Boundary surfaces Using Topological Graphs,
SM2002.

Parameterization of arbitrary surfaces

Let M be an arbitrary connected surface

of genus g>1 and with k boundary

components,

v’ g is evaluated in linear time through
the Euler formula

g=%(2—1(M)—k),Z(M)=v—e+f.

v' g is the maximal number of disjoint and
non-separating loops of M.




Parameterization of arbitrary surfaces

v How to locate and cut the ¢ topological
handles of M?

v How to avoid to disconnect the surface?

v How to join the (2g+k) boundary
components?

Handle location Handle cut Cut graph

Morse Theory and the Reeb Graph

Given f: M—R, the Reeb graph of M wrt f is the
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quotient space defined by :

(xpf(xl)) - (xzaf(xz)) = f(xl) = f(xz)
and x, and x, belong to the same connected
component of £7'(f(x))).

v'J. Milnor. Morse Theory. Princeton University Press, 1963.




Morse Theory and the Reeb Graph

If p is a critical (i.e., Vf(p)=0) and non-
degenerate (i.e., det(Hq(p))=0) point of
(M,f) and I:=index(H(p)), then

v p is a maximum if /=2;

v’ pis a saddle if /=1,

v p is a minimum if /=0.

Morse Theory and the Reeb Graph

Proposition. Let M be a connected
orientable 2-manifold of genus g, f: M — R

a Morse function, and G the Reeb graph
of (M,f). Then,

v’ y(M)=maxima-saddles+minima;

v if M is closed, G has ¢ loops;

v if M has k boundary components, G
has [ loops with g <[ <2g+k—1.




i Virtual closure
of the boundary -+ ¥
components

A

Spurious cycle Right coding

S. Biasotti. Reeb graph of bordered triangle meshes. Shape Modeling
International, 2004.

Various f: height function, geodesic
distance from curvature extrema,
harmonic, ...

v' S. Biasotti, S. Marini, M. Mortara, G. Patane. An overview on properties and efficacy
of skeletons in Shape Modeling. In Proceed. SMI 2003, pp. 245-254, IEEE Computer
Society Press.

v M. Mortara, G. Patané. Shape covering for skeleton extraction. International Journal
of Shape Modelling, 8-2, pp. 139-158, 2002.




Harmonic scalar fields with a minimal

number of critical points correspond to «

v smooth iso-contours; \

v a Reeb graph with only 2 terminal
nodes.

v X. Ni, M. Garland, J.C. Hart. Fair Morse function for extracting the topological structure
of a surface mesh. SIGGRAPH 2004.

Morse Theory and the Reeb Graph

A harmonic scalar field f:M — R is the
solution of the following linear system:

2w (f(x)=fx)=f(x)iel X

JeN(i)
f(x)=anicB

w, = cot(a, ) +cot(S;)

Xj

v" if all the constrained minima and maxima
are assigned the same global values (m,M),
then the constraints are the unique extrema
of f (= “optimality”: 1 min, 1 max, 2g saddles). [0




Handle identification & cut

Terminal node

v TRterRAt Path B¥tveen branching
nodes? &t #f MG§ not disconnected
& g>(g-1);

YES (cut=iso-contours
of Mw.r.t. f)

v mark the internal nodes of the
‘| current arc as visited.

Repeat the iteration until g cuts
have been performed.




Parameterization of arbitrary surfaces

Output: a family of possible meridian cuts
for the topological handles of M.

Parameterization of arbitrary surfaces

A family of
cut-graphs




Non-uniform surface
sampling




form sampling
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Proposition. Let M be an arbitrary

surface M. If

v g=0, the cut graph is reduced and
evaluated in O(n) time;

v g>1, the cut graph has 2¢ redundant
edges and it is evaluated in O(nlogn)
time.

G. Patane. Global parameterization of bordered triangle meshes with arbitrary genus.
IMATI-GE/CNR Technical Report 2005.




Parameterization of arbitrary surfaces

Proposition. Let M be an arbitrary
surface, yand f two cuts which reduce M
to a disk-like surface, ¢ and ¢, the
related unfoldings onto the plane. Then,

1 (9, (x)); = (95 (x));: |l
1 (@, (x);: II,

with W sub-matrix of L not affected by
the cuts and [|b, -5, [, discrepancy on the

boundary conditions.

<, (M)b, =by I,

Surface interpolation




Analysis and modelling of scalar fields
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Parameterization of arbitrary surfaces

v Flexibility: family of cut graphs;

v’ generality: bordered and closed
surfaces are treated with a unique
approach;

v smoothness and independence of the
mesh connectivity;

v’ computational cost: O(n) if g=0,
O(nlogn) otherwise;

v’ constant redundancy of the cut graph.




Proposition. Any arbitrary surface M can
be embedded onto a 3D domain P which
belongs to the convex hull of M.

IMATI-GE/CNR Technical Report.

No cut required

Reduced distortion
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PIPELINE

v" Decompose the input surface into disk-
like patches;

v' parameterize each patch.

PRO

v' Simple implementation;

v" no assumptions on the surface genus or
point density;

v well-studied.

CONS

v' Patch symmetry can be missed;

v patches do not reflect the curvature
distribution;

v" remesh requires to control smoothness
along boundaries;

v' extraordinary vertices of the remeshed
dataset are scattered on the whole
surface.

[Images from Gu2002]




Partition of the input surface into a famlly
of m patches R,...,R_ such that A~

lel. =M,
R is a connected region;
RNR, =D,i+
R # O has 0-genus and an arbitrary
number of boundary components.

M. Mortara, G. Patane, G., M. Spagnuolo, B. Falcidieno, J. Rossignac. Blowing Bubbles for
the Multi-scale Analysis and Decomposition of Triangle-Meshes. ALGORITHMICA 2004.
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Only three types of patches: R, is

v’ conical if it has 1 boundary;

v cylindrical if it has 2 boundary
components; to be cut

v body type otherwise.

G. Patane, M. Spagnuolo, B. Falcidieno. Para-Graph: Graph-based Parameterization of
Triangle Meshes with Arbitrary Genus. Computer Graphics Forum, 23-4, pp. 783-797, 2004.
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M. Mortara, G. Patane, G., M. Spagnuolo, B. Falcidieno, J. Rossignac. Plumber: a method
for the multi-scale decomposition of 3D shapes into tubular primitives and bodies. ACM
SOLID MODELLING 2004.

REEB GRAPH INDUCED BY DIFFERENT MAPPING FUNCTIONS

v

v

v

Y. Shinagawa and T. Kunii. Constructing a Reeb graph automatically from cross
sections, IEEE Computer Graphics and Applications, 11(5):44-51, 1991.

M. Hilaga, Y. Shinagawa, T. Komura and T. Kunii. Topology matching for fully
automatic similarity estimation of 3D shapes. Proc. SIGGRAPH 2001, pp. 203-212.

T. K. Dey, J. Giesen, S. Goswami. Shape segmentation and matching with flow
discretization. Int. Workshop on Algorithms and Data Stracture, 2003.

MULTI-RESOLUTIVE CURVATURE-BASED SEGMENTATION

v

M. Mortara, G. Patané, G., M. Spagnuolo, B. Falcidieno, J. Rossignac. Plumber: a
method for the multi-scale decomposition of 3D shapes into tubular primitives and
bodies. ACM SOLID MODELLING 2004.

M. Mortara, G. Patané, M. Spagnuolo, B. Falcidieno, J. Rossignac. Blowing
bubbles for multi-scale analysis and decomposition of triangle meshes. In
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227-248, Springer-Verlag.

VERTEX CLUSTERING

v

v

S. Katz, A. Tal. Hierarchical mesh decomposition using fuzzy clustering. SIGGRAPH
2003.
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v Find meridians and longitudes of the
topological handles (i.e., homology
bases) <> constrained parameterization

of bordered 0-genus surfaces;
v" editing through cut & past of surface;
v' 3D surface parameterization;

v’ surface approximation & compression;
v




A finite family K of simplices is a simplicial
complex iff:
v contains all the faces of each simplex;

v the intersection of any pair of simplices is a
common face.

Amap @: K — L is a simplicial map iff
P(Alay,..a,)) = A p(a),....p(a,)
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