

Global and Local Parameterization of Triangulated Surfaces

Giuseppe Patanè

IMATI-GE/CNR, Italy

patane@ge.imati.cnr.it

Parameterization of 0-genus surfaces

Proposition. Given a bordered 0-genus triangulated surface *M* with *k* boundary components, it is always possible to:

- map it onto a planar domain with k convex boundary components;
- to join them in linear time thus reducing M to a disc-like surface M*;
- to have link paths among boundary components "independent" of the mesh connectivity and of class C².

G. Patanè, M. Spagnuolo, B. Falcidieno. Para-Graph: Graph-based Parameterization of Triangle Meshes with Arbitrary Genus. Computer Graphics Forum, 23-4, pp. 783-797, 2004.

Morse Theory and the Reeb Graph

<u>Proposition</u>. Let *M* be a connected orientable 2-manifold of genus $g, f : M \rightarrow R$ a Morse function, and *G* the Reeb graph

of (*M*,*f*). Then,

✓ $\chi(M)$ =maxima-saddles+minima;

 \checkmark if *M* is closed, *G* has *g* loops;

✓ if *M* has *k* boundary components, *G* has *l* loops with $g \le l \le 2g + k - 1$.

Parameterization of arbitrary surfaces

<u>Output</u>: a family of possible meridian cuts for the topological handles of M.

Parameterization of arbitrary surfaces

<u>Proposition</u>. Let *M* be an arbitrary surface, γ and β two cuts which reduce *M* to a disk-like surface, φ_{γ} and φ_{β} the related unfoldings onto the plane. Then,

$$\frac{\|(\varphi_{\gamma}(x_{i}))_{i} - (\varphi_{\beta}(x_{i}))_{i}\|_{2}}{\|(\varphi_{\gamma}(x_{i}))_{i}\|_{2}} \leq \kappa_{2}(W) \|b_{\gamma} - b_{\beta}\|_{2}$$

with *W* sub-matrix of *L* not affected by the cuts and $||b_{\gamma} - b_{\beta}||_2$ discrepancy on the boundary conditions.

	Local parameterization
REEB GRAPH INDUCED BY DIFFERENT MAPPING FUNCTIONS	
~	Y. Shinagawa and T. Kunii. Constructing a Reeb graph automatically from cross sections, IEEE Computer Graphics and Applications, 11(5):44-51, 1991.
~	M. Hilaga, Y. Shinagawa, T. Komura and T. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes. Proc. SIGGRAPH 2001, pp. 203-212.
~	T. K. Dey, J. Giesen, S. Goswami. Shape segmentation and matching with flow discretization. Int. Workshop on Algorithms and Data Stracture, 2003.
MULTI-RESOLUTIVE CURVATURE-BASED SEGMENTATION	
~	M. Mortara, G. Patanè, G., M. Spagnuolo, B. Falcidieno, J. Rossignac. Plumber: a method for the multi-scale decomposition of 3D shapes into tubular primitives and bodies. ACM SOLID MODELLING 2004.
•	M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno, J. Rossignac. Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. In Algorithmica, Special Issue on Shape Algorithmics, Volume 38, Num. 2, 2003, pp. 227-248, Springer-Verlag.
VERTEX CLUSTERING	
~	S. Katz, A. Tal. Hierarchical mesh decomposition using fuzzy clustering. SIGGRAPH 2003.
✓	

