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Remark & MotivationsRemark & MotivationsRemark & Motivations

There is no single representation of surfaces that 
satisfies the needs of every problem in every 
application area.

Simple problems/queries such as genus evaluation and point 
location might be simpler if we use specific representations of 
the input surface (e.g., discrete vs implicit representations).

Applications: 
surface approximation;
texture mapping;
compression;
animation;
….
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Parameterization & Texture MappingParameterization & Texture MappingParameterization & Texture Mapping

How to color 3D objects?
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Parameterization & Texture MappingParameterization & Texture MappingParameterization & Texture Mapping

How to color 3D objects?
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Parameterization & CompressionParameterization & CompressionParameterization & Compression

Is it a 2D image?
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Meeting Place and Date

Parameterization & CompressionParameterization & CompressionParameterization & Compression

Is it a 2D image?

≈
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ParameterizationParameterizationParameterization

Can we convert it to a planar figure?



5

Meeting Place and Date

Problem statementProblem statementProblem statement

Given a collection of k constrain points
that are scattered in 3D, together with scalar values at 
each of these points construct a smooth 
surface that matches each constraint.
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Piecewise linear approximation of M and fPiecewise linear approximation of M and fPiecewise linear approximation of M and f

Triangulate the input dataset: (M,T)
Define f on M (barycentric coordinates).
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Volumetric approachVolumetric approachVolumetric approach

Consider the volume 
“around” the input surface.
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Variational approachVariationalVariational approachapproach

Express the solution f in terms of Radial Basis 
Functions centered at the constrain locations.

Radial Basis Function: function which is radially
symmetric about a single point (i.e., center).
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Variational approachVariationalVariational approachapproach

It is possible to choose the RBFs in such a way that 
they will automatically solve differential equations such 
as 

subject to constrains located at their centers, i.e.,
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Variational approachVariationalVariational approachapproach

Using the appropriate RBFs, we can write the 
interpolation function as:

degree one 
polynomial
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Variational approachVariationalVariational approachapproach
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Computational cost and storage requirementsComputational cost and storage requirementsComputational cost and storage requirements

Given n constraints:
Storage: full symmetric coefficient matrix O(n2);
Computational cost: direct solver O(n3);
n approx. 5.000 constraints represents a bottle neck for 
computation and storage.
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Constraint definitionsConstraint definitionsConstraint definitions
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Radial Basis Functions: Local vs Global SupportRadial Basis Functions: Local Radial Basis Functions: Local vsvs Global SupportGlobal Support

Slide text
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Radial Basis Functions: Local vs Global SupportRadial Basis Functions: Local Radial Basis Functions: Local vsvs Global SupportGlobal Support
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Compactly supported RBFsCompactly supported Compactly supported RBFsRBFs

The coefficient matrix becomes sparse lower storage 
requirement and computational cost.
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Kd-Tree SearchKdKd--Tree SearchTree Search

We need a fast algorithm for point location: kd-Tree requires 
O(n log(n))-time.

2:|| ||x x c r− ≤
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Reconstruction with compactly supported RBFsReconstruction with compactly supported Reconstruction with compactly supported RBFsRBFs
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Reconstruction with compactly supported RBFsReconstruction with compactly supported Reconstruction with compactly supported RBFsRBFs
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Reconstruction with compactly supported RBFsReconstruction with compactly supported Reconstruction with compactly supported RBFsRBFs
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SparsificationSparsificationSparsification

Given several approximations/representations (e.g., 
over-complete bases) of f
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We want to select a sub-basis such that

Is the best compromise between:
Sparsity;
Approximation accuracy;
Smoothness;
Feasible computational cost and storage.
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SparsificationSparsificationSparsification

Main approaches:
(I) Support Vector Machines (1995 - Vapnik/Cortes);
(II) Tikhonov Regularization (1977 – Poggio/Bertero);
It has been proven that (I) and (II) are EQUIVALENT 
(1998 – Girosi).

Main ideas:
Reproducing Kernel Hilbert Spaces
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Sparsification examplesSparsificationSparsification examplesexamples



15

Meeting Place and Date

Sparsification examplesSparsificationSparsification examplesexamples

240K input centers 62% selected centers
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Sparsification examplesSparsificationSparsification examplesexamples

Idea: iterative approach & multi-level sparsification.



16

Meeting Place and Date

Implicit modelingImplicit modelingImplicit modeling


