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Remark & Motivations

There is no single representation of surfaces that
satisfies the needs of every problem in every
application area.

Simple problems/queries such as genus evaluation and point
location might be simpler if we use specific representations of
the input surface (e.g., discrete vs implicit representations).

Applications:
surface approximation;
texture mapping;
compression;
animation;
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Parameterization & Texture Mapping

How to color 3D objects?
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Parameterization & Texture Mapping

How to color 3D objects?
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rameterization & Compression

Is it a 2D image? _.
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Parameterization & Compression

Is it a 2D image?
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Parameterization

Can we convert it to a planar figure?
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Given a collection of k constrain points {pl,...,pn}
that are scattered in 3D, together with scalar values at
each of these points {hl,...,hn} , construct a smooth
surface that matches each constraint.

f:R° >R

f(p)=h,i=1,..,n
FeCH(RY) | EWD=[[rav2rs+ 1
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Problem statement
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ecewise linear approximation of M and f

Triangulate the input dataset: (M,T)
Define f on M (barycentric coordinates).  f(x,)

f(p)
[ )

S(x,

e

p=Ax + 4%, + A4x & f(p)= A4S () + A4S (60)+ 4/ (x)
A4,20,i=1,23,4+4+4 =1
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Volumetric approach

- Consider the volume
= - - “around” the input surface.
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Variational approach

Express the solution f in terms of Radial Basis
Functions centered at the constrain locations.

()= a0(p)

Radial Basis Function: function which is radially
symmetric about a single point (i.e., center).

. (x) =exp(=|[ x—cl,)
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Variational approach

It is possible to choose the RBFs in such a way that
they will automatically solve differential equations such

T B[ S Y

. M. . .
subject to constrains located at their centers, i.e.,

f(p)=h,i=1,..,n

o(r)=r*log(|r])

Bi-harmonic kernel
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M Variational approach

Using the appropriate RBFs, we can write the
interpolation function as:

()= ap(p-p)+Px)

N

degree one
polynomial

unknowns locations of the
constraints

h.=f(p;) =ia,-(p(p,~ -p,;)+P(p;)
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M Variational approach

@, =o(p,—p;)p;, = (.0, p;)
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putational cost and storage requirements

Given n constraints:
Storage: full symmetric coefficient matrix O(n2);
Computational cost: direct solver O(n3);
n approx. 5.000 constraints represents a bottle neck for
computation and storage.
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Constraint definitions
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adial’Basis Functions: Local vs Global Support

g.(x)=exp(=|[x—cl,) -

[ x—cll,

sup(@.) =R
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al'Basis Functions: Local vs Global Support

o(x,c) = (1-r)* (4r +1);

| o(x,c)=1=r)(4+16r+12r> +31°)

p(x,c) =lx=cl,<R

r=llx—cll,

¢*(x,c)={

0 altrimenti

sup(¢,) =[0, R]

t'l imati Meeting Place and Date ':_ﬁ




requirement and computational cost.

Compactly supported RBFs

The coefficient matrix becomes sparse - lower storage
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Kd-Tree Search
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ruction with compactly supported RBFs
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T Sparsification

Given several approximations/representations (e.g.,
over-complete bases) of f

f(p)= Zai¢i(p)
i=1
We want to select a sub-basis such that
f*(p) = Zaiwi(p)al g {1,,”}
iel

Is the best compromise between:
Sparsity;
Approximation accuracy;
Smoothness;
Feasible computational cost and storage.
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Sparsification

Main approaches:
(I) Support Vector Machines (1995 - Vapnik/Cortes);
(II) Tikhonov Regularization (1977 - Poggio/Bertero);
It has been proven that (I) and (II) are EQUIVALENT
(1998 - Girosi).

Main ideas:
Reproducing Kernel Hilbert Spaces

N
. 1 . .
e {Qlf - X auki ol + el }

hir) =< h{y), K(r,y) >, vh, Y,y € RY,
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Sparsification examples
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M Sparsification examples

240K input centers > 62% selected centers
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M Sparsification examples

Idea: iterative approach & multi-level sparsification.
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Implicit modeling
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