
S. Biasotti et al / 3D shape description and matching

© The Eurographics Associations 2007

Eurographics 2007 Tutorial T12

3D Shape Description and Matching Based on3D Shape Description and Matching Based on
Properties of Real FunctionsProperties of Real Functions

 Real functions Real functions

Speaker

Giuseppe Giuseppe PatanèPatanè

 CNR-IMATI-GE - ItalyCNR-IMATI-GE - Italy

Real functions 2

OutlineOutline

! Real functions on smooth/discrete surfaces:
– General considerations

– Differential and combinatorial properties

• critical points

• Euler formula.

– Definitions

• Height and elevation

• Euclidean/geodesic distance function

• Curvature-based functions

• Local diameter

• Harmonic functions and Laplacian eigenfunctions.

– Properties

• saliency, smoothness, stability

• robustness, degrees of freedom and heuristics

• efficiency, invariance.
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How can we study the behavior of functions on How can we study the behavior of functions on MM??

! Point-wise variation and statistical distribution
of its values ("pose-oblivious signature).
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How can we study the behavior of functions on How can we study the behavior of functions on MM??

! Distribution and hierarchical organization of
shape features wrt f ("structural descriptors).
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How can we study the behavior of functions on How can we study the behavior of functions on MM??

! Embedding in frequency spaces defined by
M and f ("spectral analysis).
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How can we study the behavior of functions on How can we study the behavior of functions on MM??

! Evolution of its (lower) level sets ("Reeb
graphs, size functions, persistent homology).
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How can we study the behavior of functions on How can we study the behavior of functions on MM??

!Number, type, and locations of its critical
points (eg, Reeb graph).
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Critical points [GP76,Mil63]Critical points [GP76,Mil63]

!Given a smooth function f defined on a
manifold M:

– a point x is called critical is the differential dfx is
the zero map, that is,

– a point x is called regular if the differential dfx is
surjective, that is,
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Critical pointsCritical points

– a critical point x is called non-degenerate if the
Hessian matrix H of f is non-singular at x; then, f is
called Morse at a x

– if x is a non-degenerate critical point of f, then
the number ! of negative eigenvalues of H is

called the index of x.

– The definition of critical points is local and
sensitive to small perturbations of the surface.
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Morse functionsMorse functions

! On any smooth compact manifold there exist Morse

functions.

! On a compact manifold, any Morse function has

only a finite number of critical points.

! Morse functions are everywhere dense in the space

of all smooth functions on the manifold.

! The set S of all simple Morse functions is everywhere

dense in the set of all Morse functions.
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Morse Lemma & critical pointsMorse Lemma & critical points

!! Morse Lemma.Morse Lemma.

In a neighbourhood of each non-degenerate
critical point x, the function f can be expressed as:

where ! is the index of the critical point.

!! Euler formula.Euler formula.

#maxima - #saddles + #minima= "(M).
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Critical points classificationCritical points classification
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Functions on 3D shapes: discrete caseFunctions on 3D shapes: discrete case

Define f on the mesh vertices and extend  f

to the edges and faces by using barycentric

coordinates.

M ! R

f
max( )f

min( )f
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Linear approximation: Linear approximation: barycentricbarycentric coordinates coordinates

f is uniquely determined by its values on the

surface vertices of M.
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Critical points classification [Ban67]Critical points classification [Ban67]

! Each vertex pi of M is classified according to
the values of f on its 1-star, star, which is defined as

{ }( ) : :  ( , ) is an edge .N i j i j=

{ }1 1( ) : ,..., ( ) : ( , ) edgek s sLk i j j N i j j += !Link of iLink of i
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Critical points: minimum/maximumCritical points: minimum/maximum

!       is a maximum maximum (resp, minimum) ifi
p

( ) ( )i jf p f p>

( )j N i!

(resp, ( ) ( ))i jf p f p<
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Critical points: saddleCritical points: saddle

! Let

be the mixed link of i. Then, pi is a saddle if

{ }1 1( ) : ( , ) ( ) : ( ) ( ) ( )s s s i sLk i j j Lk i f j f p f j±
+ += ! > >
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Critical point properties: discrete case [Ban67,Ban70]Critical point properties: discrete case [Ban67,Ban70]

! If f is generalgeneral (ie, f(x) ! f(y), whenever x and y

are distinct vertices of M), then the critical
points of (M,f)

– satisfy the Euler formula

where saddles are counted with their multiplicity m

– are located where the topological changes of (M,f)
happen.

( ) #minima-#saddles+#maxima,M! =
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ExamplesExamples

!Common choices of f are:

– Height and elevation

– Distance functions:

• Euclidean-based

• geodesic-based

– Curvature-based functions

– Local diameter

– Laplacian-based functions:

• Harmonic functions

• Laplacian eigenfunctions

– …
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Evaluating the properties of Evaluating the properties of ff

! Saliency: ability to measure the shape features we
are focusing on.

! Smoothness: behavior of f wrt the naturenature of its critical
points.

!! StabilityStability wrt discretization and computation.

!! Robustness:Robustness: low variation of the f values wrt small
changes of the shape.

!! DoFDoF and heuristics:  and heuristics: number and type of parameters
involved in the definition and/or computation of f.

!! Efficiency:Efficiency: computational cost.

!! Invariance: Invariance: number/type/position of the critical points
and the shape of the level-sets are “invariant” wrt a
group of transformations.
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Height function [Ban70,FK97]Height function [Ban70,FK97]

– Given a direction #, the height function value at x$
% with respect to # is defined as f#(x):=<x,#>.

– The level sets correspond to the intersection of the
surface with planes orthogonal to the direction #.
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Height functionHeight function

!! Saliency:Saliency: f is able to identify the shape
features of M along the direction #.

!! Smoothness:Smoothness:

– Critical points are points whose normal is parallel
to the direction #.

– Almost all height functions are Morse (ie, the
critical points are non degenerate).

!! Stability:Stability: exact evaluation/computation of f
and interpolation on the faces/edges of M.
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Height functionHeight function

!! Robustness:Robustness: the computation of f is robust,
while its critical points aren’t (see example).

!! DoFDoF and heuristic:  and heuristic: the choice of #.

!! Efficiency: Efficiency: computational cost for
computing the function value

– at one vertex: O(1)

– on the whole M: O(n), (n=#mesh vertices).

!! InvarianceInvariance: the function f is

– “invariant” to translations

– dependent on rotations: the recognized
properties depend on the chosen direction.
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Height function: robustness exampleHeight function: robustness example



S. Biasotti et al / 3D shape description and matching

© The Eurographics Associations 2007

Real functions 25

Height function: robustness exampleHeight function: robustness example
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ElevationElevation [AEHW04] [AEHW04]

! For any point x of M, there exists at least one
direction # such that x is a critical point of

the height functions f# and f-#..

! Then, for every ##S2

– let x, y be two critical points of the height
function wrt the direction #,

– if x, y are paired according to the topological
persistence, then pers(x)=pers(y)=|f#(y)-f#(x)|

– the elevation is defined as

Elevation(x)=pers(x).
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ElevationElevation

!! Saliency:Saliency: f identifies the depression and
protrusions of M wrt any normal direction.

!! Smoothness:Smoothness: f is continuous and smooth
almost everywhere.

!! Efficiency:Efficiency: the overall computational cost
for

– finding the persistence pairs:

– classifying critical points:

!! Invariance: Invariance: f is invariant to translations and
rotations.
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P

P

Euclidean distance from a point Euclidean distance from a point [FK97][FK97]

!

! The level sets correspond to the intersection
of the surface with a set of spheres centered
at the point p.

!Common choices of the point are the
barycenter of M, the center of the bounding
sphere or box of M, etc.

2||||:)( pxxf !=
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Radial distance from a point Radial distance from a point [SV01][SV01]
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In an analogous way, f can be
defined on the unit sphere and used
to compute the spherical harmonics
of f.

Radial distance from Radial distance from ppEuclidean distance from Euclidean distance from pp Real functions 30

Euclidean distance from a pointEuclidean distance from a point

!! Saliency:Saliency: maxima and minima are located on
protrusions and concavities wrt p.

!! Smoothness:Smoothness: almost all distance functions from
a point are Morse.

!! Stability:Stability: exact computation at the mesh
vertices.

!! Robustness:Robustness: the computation of f is robust,
while its critical points aren’t (see example).
– For instance, the distance from the barycenter: due

to its dependence on all the vertices, the
barycenter is not affected by small perturbations of
M.
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Euclidean distance from a point: robustness exampleEuclidean distance from a point: robustness example
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Euclidean distance from a point: robustness exampleEuclidean distance from a point: robustness example

Real functions 33

Euclidean distance from a pointEuclidean distance from a point

!! DoFDoF and heuristics:  and heuristics: the point p.

!! Efficiency:Efficiency: f is computed in O(n) time.

!! Invariance:Invariance:

– f is “invariant” to translations and rotations

– f is suitable to distinguish among different poses.
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Curvature-based function [GCO06,MPS*04, ZP01]Curvature-based function [GCO06,MPS*04, ZP01]

! The principal curvatures k1 and  k2 at a point
p$M measure the maximum and minimum

bending of a surface at p:

– the Gaussian curvature K=k1 k2

– the Mean curvature H=(k1+k2)/2.

!According to the sign of the Gaussian
curvature, the points of a surface are
classified as

– elliptic

– hyperbolic

– parabolic or planar.
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Curvature-based functionCurvature-based function

!! SaliencySaliency: is provided by the characterization of the
local shape as elliptic, hyperbolic,
parabolic/planar.

!! Smoothness: Smoothness: related to the differentiability degree
of M.

!! Stability: Stability: aa  coarse surface sampling and an irregular
connectivity badly affect the discretization of the
curvature.

!! Robustness: Robustness: low degree.

!! DoFDoF and heuristics:  and heuristics: the size of the neighborhood
used to compute K and H.

!! Efficiency: Efficiency: depends on the size of the
neighborhood; at least O(n) wrt the 1-star.

!! Invariance:Invariance:
– K is intrinsic, ie it is invariant wrt isometries
– H is extrinsic and depends on the surface embedding.
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Geodesic distance: definition and propertiesGeodesic distance: definition and properties

!Given two points p,q$M, the geodesic

distance g(p,q) is the length of the shortest
path between p and q.

! The geodesic distance is invariant to
isometric transformations.

! The shortest path is not unique.

! Exact computation in

!Approximations:

– Dijkstra [VL99]:

– [SSK*05]:

– Fast marching [KS98]:
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Average geodesic distance Average geodesic distance [HSKK01][HSKK01]

! The mapping function is defined as

where g represents the geodesic distance.

! Surface protrusions are maxima of the
mapping function.

( ) ( , ) ,
v M

f p g p v dm
!

= "
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Average geodesic functionAverage geodesic function

!Discretized using a set of base points {b1,…,
bn} instead of all mesh vertices:

where area(bi) is the influence region of bi.

! It has been extended to consider also the
angle variation along a path [KT03].

( ) ( , ) ( ),i i

i

f p g p b area b=!
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Average geodesic distanceAverage geodesic distance

!! Saliency:Saliency: f discriminates protrusions of M.

!! Invariance: Invariance: f is invariant to isometries, that is, it does

not distinguish among different poses of articulated

surfaces (eg, humans, animals, etc).
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Average geodesic distanceAverage geodesic distance

!! Smoothness:Smoothness: f is smooth.

!! Stability:Stability:

– the discretization and computation depend on the chosen

algorithm, eg., Dijkstra [VL99], [SSK*05], fast marching [KS98]

– generally, a coarse surface sampling and an irregular connectivity

affect the discretization of the geodesic distance

– the instabilities are averaged by the integral in the definition of f.

!! Robustness:Robustness: f is robust to local shape changes (see example).

!! DoFDoF and heuristics:  and heuristics: choice of the base points used to discretize

the integral.

!! Efficiency:Efficiency: depends on the discretization and number of base

points. It is computationally expensive using the Dijkstra’s

algorithm with all vertices as base points: O(n2logn).
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Average geodesic distance: robustness exampleAverage geodesic distance: robustness example
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Average geodesic distance: robustness exampleAverage geodesic distance: robustness example
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Geodesic distance from feature points [MP02,VL99]Geodesic distance from feature points [MP02,VL99]

! The geodesic distance can be used to
– measure the importance of points wrt the feature points

– characterize tubular shapes of M.

! Choice of the feature points on

the surface:
– curvature extrema [MP02]

– user-defined [VL99]

– uniform sampling.

pp
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Topological distance from curvature Topological distance from curvature extremaextrema  [MP02][MP02]

! Let p be the centroid of a high-curvature
region, we define

!Given {p1,…, pk} k  feature points, we define

g as:

and

{ }
1

( ) : min ( ), , ( ) .
kp pg q g q g q= K

max( ) : ( ).f q g g q= !

gp(q):=min{k: q$ k-neighborhood}.

Real functions 45

Topological & geodesic distance from curvature Topological & geodesic distance from curvature extremaextrema

!! Saliency: Saliency: f discriminates protrusions, especially
those that include the curvature extrema as
feature points.

!! Smoothness: Smoothness: low degree.

!! Stability:Stability:

– topological distance: since f is discretized using the
connectivity of M, the neighborhood expansion is
computationally stable

– geodesic distance: the stability of f is affected by
the mesh connectivity.
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Topological & geodesic distance from curvature Topological & geodesic distance from curvature extremaextrema

!! Robustness: Robustness: the geodesic (resp, topological)
distance from feature points is robust wrt small
geometric and connectivity (resp, geometric)
changes.

!! DoFDoF and heuristics: and heuristics: choice of the feature points.

!! Efficiency: Efficiency: the computational cost of the
topological expansion is O(n) and O(nlogn) for the
geodesic distance.

!! Invariance:Invariance:

– topological distance: f  is invariant wrt any transformation
that preserves the mesh connectivity

– geodesic distance: f is invariant to isometric
transformations.
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Topological distance from curvature Topological distance from curvature extremaextrema: robustness example: robustness example
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Topological distance from curvature Topological distance from curvature extremaextrema: robustness example: robustness example
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Local diameter shape function Local diameter shape function [GSC07][GSC07]

!On a smooth surface, the exact diameter of
a shape at a point p is the distance to the
antipodal point of p wrt the direction
opposite to the normal at p.

! The local diameter function at p

– is a statistical measure of the diameters in a cone
around the direction opposite to the normal at p.

– requires closed shapes.
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Local diameter shape functionLocal diameter shape function

!! Saliency:Saliency: morphological characterization of the
shape in terms of relative size of its parts.

!! Smoothness:Smoothness: no guarantees of smoothness for the
local shape diameter: it may fail at sites of
branching or in particular visibility cones.

!! Stability:Stability: yes.
!! Robustness: Robustness: robust to deformations that do not

locally alter the shape volume.
!! DoF DoF and heuristics: and heuristics: no DoF; heuristics drive the

statistical sampling of the diameters.
!! Efficiency: Efficiency: O(n2).
!! Invariance:Invariance:

– invariant to translations and rotations
– Invariance to pose changes is forced by averaging the

values of f at the vertices of M wrt the values of neighbors.
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Harmonic functions [PP93,TAU00,DBG*06]Harmonic functions [PP93,TAU00,DBG*06]

Smooth functions with a (generally) low

number of critical points are achieved by

solving the Laplace equation with Dirichlet

boundary conditions.
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LaplacianLaplacian matrix of a triangle mesh matrix of a triangle mesh
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Discretization: weights [Flo97,PP93,Discretization: weights [Flo97,PP93,……]]
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Harmonic functions: localityHarmonic functions: locality

3, 3, 6m M s= = =1, 1, 2m M s= = =

2, 2, 4m M s= = =
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Harmonic functionsHarmonic functions

!! Saliency:Saliency:

– the choice of the maxima and minima of f ("Dirichlet
conditions) on feature regions guarantees their
characterization through (M,f)

– topological saliency: if f has only 1 min and 1 max, then
the saddle points are located on the topological handles
of M.

!! SmoothnessSmoothness:
– the number of critical points depends on the Dirichlet

boundary conditions and the genus of the input surface

– using as Dirichlet boundary conditions 1 max & 1 min
guarantees to build a harmonic function f with a minimal
number of critical points (ie, 2g saddles)

– 2 ( , ).f C M!" R
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Harmonic functionsHarmonic functions

!! Stability:Stability: the Laplace operator is local and uses only
the 1-star of each vertex. Numerical instabilities might
be introduced by its discretization:
– the cotangent weights might be negative:

– the mean-value weights are always positive and more stable
than the cotangent weights.

!! Robustness: Robustness: the computation and the properties of f
are robust wrt changes of the surface and
connectivity that do not make unstable the
discretization of the Laplace operator (see example).

ij ij
! " #+ >
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Harmonic functions: robustnessHarmonic functions: robustness

!Harmonic functions with the same Dirichlet
boundary conditions: different postures of
the same shape.
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Harmonic functionsHarmonic functions

!! DoFDoF and heuristics: and heuristics: the choice of the
Dirichlet boundary conditions.

!! Efficiency:Efficiency:

– solution of a sparse linear system O(nlogn)

– changing the Dirichlet boundary conditions does
not require to re-build the Laplacian matrix.

!! Invariance:Invariance:

– f is invariant wrt isometries

– with constant weights, f is affine invariant.
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EigensystemEigensystem of the  of the LaplacianLaplacian matrix [NGH04,RWP06] matrix [NGH04,RWP06]

! The spectrum of the Laplacian matrix
associated to M enables to define a set of
functions “intrinsically” defined by the input
shape.

! Since L is symmetric, it has a real
eigensystem

and
,   1,...,

i i i
Lx x i n!= =
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" # =$R
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Spectrum of the Spectrum of the LaplacianLaplacian Matrix Matrix

! Eigenvalues:

! Eigenvectors:

! i-th function

1 2
0 ...

n
! ! != " " "

( , ),     
i i i i i
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LaplacianLaplacian  eigenfunctionseigenfunctions: examples: examples

! Large set of smooth eigenfunctions with a
“generally” low number of critical points.
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3
f

4
f
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LaplacianLaplacian  eigenfunctionseigenfunctions: examples: examples

30
f

40
f

10
f

20
f
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LaplacianLaplacian  eigenfunctionseigenfunctions

!Nodal set: zero-set of an eigenvector:

– subdivides M into (nodal) regions where the
eigenvector has constant sign

– xk has at last k nodal regions

– nodal sets are curves which intersect at constant
angles.

2
f

3
f
6
f

4
f
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EigenfunctionEigenfunction switch switch

! Generally, the numerical computation of the
Laplacian spectrum may switch the order of some
eigenvalues/eigenvectors (see examples & appendix).

i
!

i

1i i
! !" #
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EigenfunctionEigenfunction switch switch

21 22
! !>

22
0.011290! =

21
0.011382! =
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EigenfunctionEigenfunction switch switch

37 38
! !>

59 60
! !>

37
0.015696! =

38
0.015493! =

59
0.020054! =

60
0.020038! =
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EigenfunctionEigenfunction switch switch

65 66
! !>

86 87
! !>

65
!

66
!

86
!

87
!
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LaplacianLaplacian- - eigenfunctionseigenfunctions

!! Saliency: Saliency: each function is intrinsically defined
by M.

!! Smoothness: Smoothness: the first eigenvectors
correspond to smooth and slowly varying
functions, while the last ones show rapid
oscillations.

!! Stability:Stability:
– the discretization of the Laplace operator is local

and uses only the 1-star of each vertex

– numerical instabilities might be introduced by its
discretization

– the switch of the eigenfunctions might happen
regardless the mesh discretization.
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LaplacianLaplacian  eigenfunctionseigenfunctions

!! Robustness: Robustness: the computation and the properties of f
are robust wrt changes of the surface and
connectivity that do not make unstable the
discretization of the Laplace operator (see
examples).

!! DoFDoF and heuristics: and heuristics:

– choice of fi among (n-1) non-trivial functions

– sign of the eigenvectors.

!! Efficiency: Efficiency: O(nlogn), O(n2) depending on the
sparsity of L.

!! Invariance:Invariance:

– f is invariant wrt isometries

– with constant weights, f is affine invariant.
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LaplacianLaplacian  eigenfunctionseigenfunctions: robustness (critical points): robustness (critical points)

if if

   m M s
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LaplacianLaplacian  eigenfunctionseigenfunctions: robustness (level sets): robustness (level sets)
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f

3
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LaplacianLaplacian  eigenfunctionseigenfunctions: robustness (level sets): robustness (level sets)

4
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4
f

5
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AppendixAppendix: Perturbation Theory for: Perturbation Theory for

Eigenvalues and EigenvectorsEigenvalues and Eigenvectors

[GV89][GV89]
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Perturbation theory: general casePerturbation theory: general case

! Right eigenvector

! Left eigenvector

! If A is diagonalizable,

Ax x!=
* *
y A y!=

*
0,

i j
y x i j= !

!Consider the matrix

with right eigenvector             and

eigenvalue

Pb: Which relation exists between the

eigensystem of

: ,      | | 1ijA A B b! != + "

( )
i
x !

( ).
i
! "

, ?A A!
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EigenvalueEigenvalue perturbation: general case perturbation: general case

! For each eigenvalue, the following relation holds

! Then, the above estimation is:

– proportional to the l2-conditioning number of
the perturbation matrix B

– inversely proportional to the angle between the
left and right eigenvectors.

*2( ) || ||
,     ( ) : .

( )

i i
i i i

i

B
s y x

s

! " !
!

" !

#
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EigenvalueEigenvalue perturbation: general case perturbation: general case

! We note that

! The term            is called conditioning number of the
eigenvalue

! Then, an eigenvalue is well-conditioned iff its
conditioning number is not close to zero.
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EigenvalueEigenvalue perturbation:  perturbation: LaplacianLaplacian matrix matrix

! If the input surface is closed (or with boundary +
virtual edges), the Laplacian matrix is symmetric and

! Each eigenvalue is well-conditioned and

! The variation of the eigenvalues depends only on
the l2-norm of the perturbation matrix B.
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Eigenvector perturbation: general caseEigenvector perturbation: general case

! For the i-th eigenvector, we have

! Then, the bound depends on:

– the conditioning number of each eigenvalue

– the differences

– the factors
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Eigenvector perturbation: general caseEigenvector perturbation: general case

! The perturbation in the eigenvector is proportional
to the conditioning number of the whole set of
eigenvalues.

! If the eigenvalues are close to one another, we
may have difficulties in computing the
eigenvectors.

! Let A have distinct eigenvalues. If for some
eigenvalue                 then there exists a matrix E
such that      is a repeated eigenvalue of (A+E) and
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The perversity theorem does not holdThe perversity theorem does not hold

! Then,  even if the eigenvalues are distinct, if one
eigenvalue is ill-conditioned, the computation of the
eigenvalues, and especially the eigenvectors, may
be very difficult.
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Jacobi iterations and stop criteriaJacobi iterations and stop criteria

! The (first or last) elements of the eigensystem of the
input matrix are evaluated by using the Jacobi
method with 2 stop criteria:

– max. number of iteration

– approximation threshold

! Increasing          and reducing      do not avoid the
switching of eigenvalues and eigenvectors.
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Jacobi iterations and stop criteriaJacobi iterations and stop criteria
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EigenfunctionEigenfunction  ““switchswitch”” on different shapes on different shapes
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EigenfunctionEigenfunction switch: discussion switch: discussion

!  The switch of the eigenfunctions
– can happen among the eigenfunctions of the

same surface;

– is strictly correlated to the computation of the
eigensystem;

– a “good” geometry and connectivity (wrt the
computation of the entries of L) do not guarantee
to avoid the switch of the eigenfunctions.
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