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Abstract

The paper introduces a framework for the automatic extraction and annotation of anthropometric features from

human body models. The framework is based on the construction of a structural model of the body, built upon a multi-

scale segmentation into main bodies (e.g., torso) and limb features (e.g., fingers, legs, arms). The decomposition is

independent of the body posture, it is stable to noise, and naturally follows the shape and extent of the limb features of

the body. The structural description of the human body is turned into a semantic description by using a set of rules and

measures related to the features and by reasoning their configuration. Results are shown both for scanned body models

and virtual humans, and applications are discussed in relation to several tasks of the animation process.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The automatic recognition of features in free-form

shapes is a challenging issue, especially when the

semantics underlying the feature definition is related to

an intrinsically not formalized context. This is the case

of features of the human body: neck, legs, thigh, elbow,

and many other terms which identify relevant body

parts, refer to portions of the body shape which cannot

be precisely coded or identified by a mathematical

formulation. Also, some of the body features are

composition of other features: a leg is defined by the

shin, the calf, the thigh, its articulation depends on the

knee and by the ankle and hip which connect it to

the body. At the same time, in the last decade we assisted

to a growing interest in computer-aided methods to
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study and analyse the shape of the human body in

digital contexts. Due to the advances of scanning

technology, it has been possible to carry out one of the

largest anthropometric survey within the CAESAR

project [1] which has made available a set of data of

over 10 000 individuals in digital form. Traditional

anthropometric practices largely rely on the knowledge

of the expert performing the manual measuring of sizes

and shapes, using tapes and calipers, and on the use of

different postures to get a precise evaluation of the

various anthropometric parameters. Body size measur-

ing tools are generally limited to 1D information

while the new 3D body scanning technology provides

capabilities such as segmental volumes and surface

areas [1], and may support a more reliable and surely

less expensive way to measure shapes. The potential

impact of 3D surface anthropometry is therefore very

high in fields related to ergonomics, cloth and prosthetic

design, obesity studies, and many more [2].

Human body models, being either scanned or

modelled, are of high interest for the animation industry

as well. A modelling system based on human features
d.
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would greatly improve several steps of the animation

pipeline. A human body is usually animated by

associating a so-called control skeleton to the 3D shape,

which is a connected set of segments corresponding to

limbs and joints, that is, the points where the connected

limbs may move. Unfortunately, both the skeleton

extraction and the establishment of the correspondence

between the geometry and the skeleton can be strongly

time-consuming. Some commercial software packages

include tools for skeleton-based animation, like Maya

and 3D Studio MAX. Nonetheless, the creation of a

control skeleton may require several hours of work, and

the user must possess a fair degree of proficiency with a

package to obtain even a rudimentary motion. A

decomposition of the human body into relevant

features would therefore contribute to speed up these

applications.

In this context, we present the results of a new

framework for automatically annotating a human body

model with information related to the body features.

The annotation and reasoning about the features are

supported by the segmentation of the human body

models into geometric features, by the creation of a

skeleton which encodes the feature attachment relations,

and by a measuring scheme which allows to attach

quantitative descriptors to each part. The segmentation

approach is based on the multi-scale method called

Plumber, developed for segmenting a surface into

generalized cones and cylinders [3,4]. Plumber defines

the basic decomposition of the body model into tubular-

like parts and main body, usually corresponding to the

torso in the context of human body models. The surface

patch corresponding to the torso is further segmented in

order to extract symmetry regions and areas of influence

of the various attachments of joints to the torso. Based

on this geometric segmentation, a semantic model is

built as an annotated shape-graph where each node

corresponds to a relevant feature represented by its

centreline skeleton and a set of cross-sections. Reason-

ing can be performed on the shape-graph to deduce

further measures and identify compound of features, as

well as to classify body models using standard anthro-

pometric rules.

The main characteristics of the method proposed are

the ability to produce a semantically consistent shape-

graph of human body models independently of their

posture, and the automatic association of skeletal lines

to body limbs together with cross-sections and size

parameters. Due to the properties of the Plumber

method, the segmentation is stable with respect to noise

in the model.

The paper is organized as follows: first, previous work

on the characterization of the human body is reviewed in

Section 2; the segmentation approach underlying the

presented framework is briefly described in Section 3,

and the reader can find full details in [3,4]; in Section 4,
the graph used to code the human body and its use for

extracting and computing relevant anthropometric

measures are described; in Section 5, the use of the

framework is discussed in relation to the input data

characteristics and applications. Finally, conclusions

and future work are drawn.
2. Previous work

The paradigm of shape segmentation has been largely

studied in the literature, both for generic and specific

application contexts as well as for discrete and

continuous shape representation schemes. In the specific

context of human body, the segmentation has been often

addressed in parallel with the automatic location of

landmarks. The first attempts were devised for working

on the point clouds resulting from the scanning sessions.

The work presented in [5] approaches the problem of

recognizing relevant body parts as an aid to the

optimization of the body measures themselves. 3D body

scanners acquire data along horizontal slices and the

quality of the resulting measurement obviously depends

on physical limitations of the scanning device and the

body posture. If the body is scanned using a natural

standing position, indeed, the arms will generally touch

the torso and in this area it is impossible to distinguish

points on the arm from points on the torso. To solve this

problem, the method proposed in [5] is aimed at the

detection of sharp variations of the contour shape,

which are used to trim the arm data and to reconstruct

the missing torso data. The method does not have a

general validity, as it depends on the specific posture,

and the segmentation provides a quite poor description

of the body features.

The method described in [6] and refined in [7] adopts

an approach based on the alignment of a stick figure,

representing the abstract skeletal structure of a body in a

standard pose, to the raw data. The stick figure is

composed of six linear segments, which are aligned to

the scan data under user control. This method provides

the segmentation and also the computation of the

feature centrelines, but it suffers of the same dependence

on the body posture as the method previously described.

The segmentation indeed uses information of the

horizontal scanning contours, and it produces a space-

based and not a shape-based decomposition.

The analysis of horizontal slices has been more

recently used in [8] within a framework which segments

raw data according to their membership to a body part,

reconstructs the shape of the body parts, and attaches

them together in order to build the full body reconstruc-

tion. Again, the segmentation is functional to the

reconstruction and the boundary of the body parts is

horizontal, as it is computed relying on the horizontal

scanning slices.
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The advantages of defining the segmentation directly

on the body surface instead of on the space occupied by

the body has been introduced in [9], where the body is

segmented using concepts of Morse theory. A topolo-

gical graph which codes the evolution of the level sets of

real-valued mapping functions is used to segment the

body shape. Terminal and branching nodes of the graph

correspond to critical values of the mapping function,

which is chosen as the integral geodesic distance. The

graph connectivity is used to segment the shape into

parts which represent the relevant features of the body.

As the authors point out, one of the main advantages of

the method is to provide a posture independent

segmentation of the shape.
Fig. 1. (a) Evolution of the intersection curves between the

input surface and a set of spheres with the same centre and

increasing radii, (b) classification of blend, sharp and planar

vertices, (c) tubular features classified as cylinders and cones.
3. Multi-scale geometric shape segmentation

The proposed decomposition of the human body and

its semantic annotation rely upon a general shape

segmentation method called Plumber, developed by the

authors and fully described in [3,4]. For the sake of

clarity, we summarize here the main aspects of the

segmentation, while details can be found in the cited

references.

The Plumber approach to shape decomposition is

aimed at the extraction of tubular features of a 3D

surface represented by a triangle mesh. The Plumber

algorithm segments a surface into connected compo-

nents that are either body parts or elongated features,

that is, handle-like and protrusion-like features, together

with their concave counterparts, i.e. narrow tunnels and

wells. The recognition is based on the classification of

vertices according to geometric and morphological

descriptors evaluated on neighbourhoods of increasing

size. The set of neighbourhoods associated to each

vertex is defined by a set of spheres, centred at the

vertex, and whose radii represent the scale at which the

shape is analysed. The number of connected components

of the intersection curve between each sphere and the

surface gives a first qualitative characterization of

the shape in a 3D neighbourhood of each vertex. Then,

the evolution of the length ratio of these components

with respect to the radius of the spheres can be used to

refine the classification and detect specific features, such

as sharp protrusions or wells, mounts or dips, blends or

branching parts. For example, for a thin limb, the

intersection will be simply connected for a small radius

and it will rapidly split into two components as the radii

increase. For a point on the tip of a limb, the

intersection will remain connected, but the ratio of its

length to the radius of the sphere will be decreasing. See

Fig. 1 for an example of the process.

Plumber specializes this approach to the detection and

extraction of tubular features. At the first step, seed

vertices are located and clustered to form candidate seed
regions which are then used to compute the first reliable

tube section, called the medial loop. This loop is ensured

to be around each candidate tube and works as a

generator of the feature. Then, the medial loop is moved

in both directions on the shape, by using spheres placed

not on the surface but at the barycentre of the medial

loop iteratively and until the tube is completely swept.

The stop criteria of the iterative procedure are discussed

in Section 3.3. The tube detection works in a multi-scale

setting, starting with the extraction of small tubes first.

Assuming that the shape is represented by a mesh

triangle M and that we are using a set of levels of detail

frg, the steps of the extraction procedure are presented in

the following paragraphs.
3.1. Vertex classification

For each vertex v 2M and scale r, we consider the

surface region containing v and delimited by the

intersection between M and the sphere Sðv; rÞ of centre
v and radius r; let g be the boundary of this region and

let us discard all other regions of intersection between

the sphere and the mesh that might occur but do not

contain v (see Fig. 1(a)). If g has only one connected

component (see Fig. 1(b)), then the surface around v is

equivalent to a disc and its curvature at scale r is
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Fig. 2. (a) Selection of a level of detail r, (b) classification of

vertices, (c) identification of a seed limb region, (d) medial loop,

(e) iterations, (f) extraction and abstraction of the tubular

feature as a skeletal line and a set of contours.
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approximated by the non-negative ratio GrðvÞ:¼lg=r [10],

where lg is the length of g. Furthermore, v is classified as

planar if GrðvÞ � a, sharp if GrðvÞoa, and blend if

GrðvÞ4a, where a is a given threshold.

Let us now suppose that g has two connected

components, and in this case the vertices are labelled

as limb. The vertex v at scale r is classified as cylindrical

when the ratio between the maximal and minimal length

of g1 and g2 does not exceed a given threshold �, that is,
lg1 � �lg2 ; otherwise, it is labelled as conical (see Fig.

1(c)). If g has three or more connected components, v is a

branching and we do not consider other geometric

descriptors.

The set of radii is automatically set by uniformly

sampling the interval between the minimum edge length

and the diagonal of the bounding box of M. These

parameters, as well as those ones used for the classifica-

tion of the vertices (i.e., a:¼2p, �:¼2), can be selected by

the user if an a priori information on the input shape is

available or if he/she is searching for some specific

configurations (e.g., vertices whose sharpest angle is less

than a given value). The choice of a and � can obviously

take into account a specific application context, as

detailed in Section 4.

3.2. Shape segmentation

The vertex classification is used for defining a shape

segmentation into connected components which are

either tubular features (i.e., regions which can be

described as generalized cones or cylinders) or body

parts (i.e., regions which connect tubular features). To

this end, we proceed in the following steps: we select a

level of detail r and we identify seed limb-regions as the

maximal edge-connected regions of limb-vertices with

respect to a depth-first search (see Fig. 2(a–c)). Then, we

compute the medial loop of each seed limb-region which

represents the generator of the feature, and it is used for

its expansion until a stop criteria is satisfied. In Fig. 2(d),

the medial loop is the boundary of the dark region, while

the growing phase is shown in (e). Then, we iterate the

process on M by considering the next level of detail.

The radius, or scale, of the sphere influences two steps

of the tube recognition process: once for the morpho-

logical analysis, to locate the limb vertices and candidate

tube regions, and once for the tube growing phase. The

stop condition of the tube sweeping phase is decided

either by a threshold on the variation of the intersection

length, by the ending of the tubular feature itself, or by

the splitting of the tube at a branching site. If the tubular

feature ends, the tube is called cap and it will have only

one boundary, as it is shaped as a generalized cone. The

extraction of tubes adopts a fine-to-coarse strategy,

marking triangles as visited while the tube grows so that

they are not taken into account at the following steps.

At the end of the whole process, tubes are labelled with
respect to the scale at which they were found. The

connected components of the shape which are not

classified as tubular features define the body parts of the

input surface. In Section 4, an extension and refinement

of the Plumber segmentation for body parts will be

presented.
3.3. Shape segmentation properties

The described segmentation method is robust to noise

and independent of the vertex sampling and connectivity

regularity (see Fig. 3). In fact, the computation of the

intersection curves among M and the selected set of

spheres uses the connectivity structure only for the

computation of g, while the classification of a vertex p as

belonging to a tube at scale r (i.e., kp� ck2pr, with c as

centre of the current sphere) relies only on the set of

vertices. The curvature evaluation on the real scan

model shown in Fig. 4 is performed at three radii; at the

smallest radius, the segmentation presents many tiny

regions, mainly composed by one vertex only, and due

to the noise in the data. At larger scales, the influence of

noise on the curvature computation and tube extraction

becomes negligible; in fact, the intersection between the

sphere and the mesh is computed exactly and it is not
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Fig. 4. Main step and robustness to noise of the Plumber

segmentation on a scan model consisting of 13 790 vertices;

timings are given in Table 1.

Fig. 3. Shape decomposition when the geometry of the input

surface is (a) coarse, (b) smooth, and (c) affected by noise.

Table 1

Timings (in seconds) of the Plumber segmentation shown in

Fig. 4

Task R ¼ 1 R ¼ 5 R ¼ 8

Tailor (s) 11 51 61

Medial loop (s) – 21 50

Tube construction (s) – 3 3
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affected by the underlying mesh quality. Timings are

reported in Table 1.

3.4. Performance of the algorithm

The time complexity required by the tube extraction

depends on the following stages: curvature evaluation,

medial loop computation, and tube growing. In the

worst case (i.e., when almost all the vertices fall inside

the sphere), the curvature analysis at each vertex takes

OðnÞ-time, with n number of vertices; therefore, the

complexity for the whole model is Oðn2Þ. Even if the

average case is less complex and depends on the radius

size, this is the slowest phase of the workflow. The

medial loop computation uses Dijkstra’s algorithm and

takes Oðm2 log mÞ-time for each seed limb region, where

m is its number of vertices. The tube growing phase,

which actually constructs the tubular structures, is linear

in the number of triangles belonging to tubes. Once the

final segmentation is built, the shape-graph is evaluated

in linear time with respect to the number of patches.
4. The semantic body model

In this section, we describe how to extract the semantic

content, which is implicit in the digital model, from the

geometry, the structure, and the knowledge pertaining to
the domain. Since the input model represents a human

body, either virtual or scanned, its relevant tubular

features will identify arms, legs, neck, and fingers. The

torso and its symmetries are also important data in the

anthropometry domain. In general, Plumber will not find

directly these features, but some of their parts. For

instance, a hand will be segmented into five small tubes,

possibly with their associated caps, all of them being

attached to the same body part. Reasoning on the

relative sizes of the features and on the attachment

relations among them makes possible to recognize and

automatically measure semantically relevant parts of the
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Fig. 5. Voronoi-like regions of the body primitives shown in

Figs. 9 and 15, respectively.

Fig. 6. Surface segmentation of the bi-torus into a body

primitive and two tubular features and its shape-graph.
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human body. To this end, let us explain how the

segmentation obtained using Plumber is coded as a

shape-graph, and then we will show how different

descriptors can be associated to the shape-graph in order

to produce a semantic body model.

4.1. Centrelines of tubular features

Each tubular feature T, extracted at scale r, either

conical or cylindrical is abstracted by a skeletal line

defined by joining the barycentres bi of the intersection

curves gi betweenT and the set of spheres used to sweep

the tube. Since the shape and position of the tubular

feature could be arbitrarily complex, the intersection

curves are good descriptors for the cross-sections of the

tube along the centreline. At the same time, positioning

the centrelines at the barycentres of the intersection

curves allows us to follow the extent of the feature at the

resolution that the application requires. It is important

to notice that, from the point of view of the measures

that will be introduced later on, all tubular parts are

represented with a number of intersections that depends

only on the scale and size of the feature, thus ensuring

consistency of the classification among different parts of

the body.

4.2. Refinement of the body parts

While conical and cylindrical tubular features have a

specific shape, body parts can be arbitrary shaped. It

might be interesting to further segment each of them in

order to identify symmetries in their shape and define

the influence areas of the attached features for support-

ing the localization of joints (see Section 5).

Let us consider a body primitive B with kX3

boundary components gi, i ¼ 1; . . . ; k; in order to

determine the area of influence of each boundary, a

reasonable approach is to cluster the vertices of B which

are closer to the same boundary component with respect

to the geodesic distance. Instead of using this approach,

which is time consuming and sensible to the connectivity

regularity of B, we use a parameterization of the body

part on a planar domain O isomorphic to B and with

respect to one of its boundary components, using the

approach presented in [11]. If j:B! O is such a

parameterization, a vertex p 2 B can be associated with,

i.e. clustered with respect to, the boundary gs such that

kp% � prbs
ðp%Þk2 ¼ min

j¼1;...;k
fkp% � prbj

ðp%Þk2g,

where prbj
is the orthogonal projection onto the convex

curve bj :¼jðgjÞ, and p%:¼jðpÞ. Therefore, the use of the
geodesic metric on B has been replaced by the

evaluation of the Euclidean distance on the parameter-

ization domain. At this stage, regions with the same area

reflect a symmetry of the patch (see Fig. 5).
4.3. Coding the features in an adjacency graph

The surface decomposition and the skeletal lines of

tubular features are coded in a connectivity graph which

represents the spatial arrangement of the tubular

features onto bodies. The shape-graph nodes are the

extracted primitive shapes, while the arcs code the

adjacency relations among them (see Fig. 6). In general,

each arc between two adjacent nodes falls into one of

these cases: cylinder–body, cylinder–cylinder, and con-

ical–cylinder. The cylinder–body or cylinder–cylinder

adjacency is called H-junction (i.e., handle-junction) if

both boundaries of the cylinder lay on the same body, or

cylinder; in this case, the arc induces a loop and the

cylinder locates a handle on the input model. In the case

of human bodies, this might happen if, for example, the

hand touches the leg or the torso. Finally, if only one

boundary of the cylinder belongs to the cylinder–body,

the adjacency is called a T-junction.
4.4. Semantic descriptors and reasoning

While the adjacency relations in the graph define the

structure of the human body with respect to the

decomposition, the geometry of the features are

further characterized by the following descriptors. Each
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cylindrical node is uniquely labelled in the graph and it is

stored with:
�

Fig

two

sec

tha

of
the scale r at which the tube has been found;
�
 the set of its approximated cross-sections (i.e.,

sphere–tube intersections) and the average radius;
�
 the set of its centreline points (i.e., barycentres of the

sphere–tube intersections);
�
 the orientation of each segment of the centreline

(turning);
�
 the centreline axis length and the approximated

volume.
Fig. 8. First row: input models of virtual humans in different

postures. Second row: cylindrical features are depicted in

yellow; conic and body features are shown in blue. The model

consists of 5775 vertices and the algorithm takes 18 s for the

curvature analysis and 2 s for the other phases.
Each conical node is stored with the same attributes as

tubes, except the radius of the average cross-section

which is replaced by the radius of its basis section; in this

case also the maximum of the Gaussian curvature in the

region is stored. Each node of type body is stored with

the number of its boundary components, its approx-

imate volume, and its refined segmentation.

Based on the structural and geometric information, it

is possible to reason on the semantic aspects of the body

model. First of all, there is a strong relation between the

scale r at which the feature is found and the minimum

section size of the tube it represents. A sphere of radius r

will label as limb all the vertices lying on a tubular part

whose section has a maximum diameter less than r=2
(see Fig. 7). Therefore, running Plumber from smaller to

larger scales, we expect to recognize at first fingers, then

arms, legs, and eventually the neck. Note that what is

important for the identification of a tube is the minimum

section size to start the growing: wrists are found first as

candidate tubes, and then the tube growing constructs

all the arms; the same for legs that are identified starting

from the ankles, and so on. For this reason, the neck is

likely to be the last tube found; its section is usually

larger than that of the ankle (see Fig. 8).

The arms and legs might be found as the composition

of two tubes: this case happens rarely, and usually for
. 7. The sphere of radius r centred in the yellow vertex has

intersection curves if the maximum diameter of the tube

tion is less than r=2 (black line), and only one if it is greater

n r=2 (blue line). The red line represents the limit value

r=2.
designed virtual human where the shape of the body part

can emphasize joints for artistic reasons, like in the

example given in Fig. 9(a,b).

The knee sections may be so small to be recognized as

candidate tubes at the same scale as the wrist and the

ankle, respectively. This produces two tubes for each

limb to grow, and where they meet, each one stops. This

situation is handled by checking if the last computed
Fig. 9. (a) Two seed regions for each leg are found at the same

scale: the knee and the ankle. (b) Result of the tube growing on

the seed regions in (a). (c,d) Result obtained by joining the

adjacent tubes in a single tube.
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tube section lies completely on another tube; the two

tubes are kept separately but a link is included in the

shape-graph to underline that they form a single
Table 2

Shape parameters of the features detected in examples of Fig. 10: the fi

to examples (c) and (d); the first column contains the feature identifie

finally, the fourth the average section length, as defined in Section 4

N. Tube length Max. a Aver. sect. length

2 7.07 �0.94 4.94

3 5.50 �0.93 3.63

4 5.51 �0.95 3.39

5 7.07 �0.94 4.94

6 5.47 �0.95 4.02

7 5.50 �0.95 3.40

8 39.91 �0.91 23.26

9 39.95 �0.95 23.17

10 17.84 �0.94 67.34

11 82.17 �0.43 39.22

12 93.14 �0.79 43.98

2 5.30 �0.95 5.22

3 5.56 �0.96 3.21

4 5.55 �0.94 3.33

5 5.30 �0.96 5.25

6 3.61 �0.96 4.71

7 5.55 �0.94 3.28

8 39.87 �0.69 23.60

9 48.23 �0.76 28.21

10 17.70 �0.96 69.48

11 92.23 �0.92 44.29

12 89.61 �0.10 41.99

Fig. 10. First row: semantic body model of the virtual humans

shown in Fig. 8. Second row: identifiers of the features, whose

shape parameters are reported in Table 2.
semantic tubular feature, while tube properties, such as

length and section size, will be computed as they were

two single tubular features (see Fig. 9(c,d)).

The scale attribute together with the tube length, the

information about the section size, and the shape-graph

make it possible to classify each tube as arm, leg, finger,

or neck; this step is currently under development but it

has already been validated by results shown in Fig. 10

and Table 2. All the three parameters are needed

because of the many possible types of result. It may

happen that the neck is too short and wide to be

recognized, and the same may happen for fingers.

It is quite frequent, indeed, to identify only some

of the fingers, usually missing the thumb which is

the thickest and shortest. If at least some of the

fingers are recognized, we are able to identify the arms

through the shape-graph, and consequently all the other

limbs.

We cannot be completely confident on the tube length

either: for fat humans, legs intersect before the hip (see

Fig. 11(a,b)) and the corresponding tubes are shorter,

comparable with the arm length. This may also be

caused by the posture, as it happens for the sitting man

in Fig. 11(c), where only the foreleg can be recognized.

As shown in Fig. 12, fatness represents the major

problem, since Plumber does not classify as tubes limbs

that are too short with respect to their thickness.
rst row corresponds to examples (a) and (b), and the second row

r, the second the tube length, the third the a turning value, and

N. Tube length Max. a Aver. sect. length

2 5.27 �0.95 5.21

3 5.51 �0.93 3.61

4 5.52 �0.95 3.39

5 3.65 �0.94 4.16

6 7.13 �0.93 4.76

7 5.48 �0.93 4.08

8 5.47 �0.93 3.95

9 42.91 �0.39 26.60

10 39.58 �0.61 23.73

11 17.61 �0.92 67.65

12 91.30 �0.74 43.86

13 74.86 �0.73 36.97

2 7.15 �0.94 4.95

3 3.63 �0.96 4.64

4 5.57 �0.94 3.26

5 7.15 �0.94 4.95

6 3.63 �0.92 4.69

7 5.57 �0.94 3.27

8 40.30 �0.97 23.28

9 40.07 �0.72 23.46

10 18.03 �0.95 69.23

11 89.31 �0.50 42.53

12 96.30 �0.53 44.07
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Fig. 11. (a) Seed regions identified by Plumber on a fat man

model. Note the low joint between the legs. (b) Identified

tubular features. Tubes representing the legs stop in correspon-

dence of the joint and the length of arms and legs becomes

similar. (c) The same man in a sitting posture, with arms lying

on the body. Arms will not be recognized as tubes, and legs stop

when the seat is intersected.

Fig. 12. Tubes identified at (a) the first and (b) second scales.

1Given two triangle meshes M1 and M2, we normalize them

by applying a uniform scaling on their vertices in such a way

that the new surfaces belong to the unit cube while maintaining

their relative proportions, that is, we normalize the vertices with

respect to the constant C:¼maxfc1; c2g with ck:¼maxpi2Mk
fp
ðjÞ
i ;

j ¼ 1; 2; 3g, k ¼ 1; 2, and p
ðjÞ
i the jth component of pi .
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The axis inclination gives us a precious information

about the body posture. In the context of virtual

humans, we can exploit the fact that limbs are rigid

except at the joints; therefore, the tube axis will be nearly

straight, except in a few points, which identify the

torsion in the articulation sites. Note that a tube may

have at most three articulations: for instance, a leg may

comprehend the ankle, knee, and hip joints. Again, the

shape-graph is used to discriminate each joint, giving an

‘‘outward’’ ordering to each tube, from its attachment to

the body towards the tip of the protrusion. We compute

the turning a at each node p of the tube axis of T as

a:¼cos�1ðhu; vi=ðkukkvkÞÞ where u and v are the vectors

of T which share p. For each triple ða; b; cÞ of

consecutive points along T, the cosine of the angle
formed by ab and bc discriminates between an acute and

an obtuse angle (a turning greater or smaller than p
2
) but

do not distinguish a ‘‘right’’ from a ‘‘left’’ turning with

respect to a fixed coordinate system. Since the cosine

function is bounded, each turning value belongs to the

range ½�1; 1� and it can be directly used for comparing

virtual humans in different postures. On the contrary,

tube length, section, and volume depend on each model

measure unit; then, before running the morphological

analysis the surface models must be normalized.1 For

the triple ða; b; pÞ, let u:¼ða� pÞ, v:¼ðb� pÞ, and a be the

turning value at p computed as previously described.

When ða; b; pÞ lie on a straight line, u and v form at p an

angle of p corresponding to a null turning; when this

angle is 2p, i.e. a � b, a maximum turning occurs in p

(see Table 2).

Comparing the values in Table 3 obtained for virtual

and real body models, some further conclusions can be

drawn on the efficacy of the descriptors. For virtual

humans, the turning value quite nicely discriminates

between different postures and for real body models we

may see that the different sizes of the body is reflected by

the changes in the cross-section size.

Finally, approximating each tube with truncated

cones of circular bases, each having the same length of

the corresponding tube cross-section, enables to calcu-

late an approximation of the feature volume as the sum

of the volumes of each building part. Then, the ratio

volume/length gives a hint on the human limb fatness, in

analogy with the body mass index (weight/length, see

Fig. 13), and the ratio volume/length discriminates

between two individuals of same limb thickness but

different height (see Fig. 14 and Table 3).
5. Discussion

Our approach subdivides the model into limbs and

body. The scales (i.e., the radius of the spheres used for

the characterization and tube growing phases) can be

automatically tuned on human anatomic measures such

as approximated section of fingers, wrist, forearm, arm,

ankle, calf, thigh, neck. Then, the geometric attributes of

the recovered tube sections and axis can give informa-

tion about the characteristics of the human model; for

instance, the approximated volume of limbs with respect

to their length may give the amount of fatness/thinness.

The neck will be recognized as a tube only if it is thin

and long, and the same applies to fingers. Also, the
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Fig. 13. Analysis of the thinness and fatness based on the ratio between the volume, size, and length of each body feature.

Fig. 14. Shape segmentation; parameters are reported in Table 3.

Table 3

Shape parameters of tubular and conical features related to the examples in Fig. 14

N. Tube length Max. a Max sec. length Min sec. length Aver. sect. length

2 51.13 43.04 47.42 15.51 26.58

3 53.97 42.31 50.26 16.02 28.29

5 66.63 80.21 56.58 23.29 39.67

6 85.88 111.84 56.25 16.08 35.97

7 16.70 �33.07 23.88 23.29 23.58

8 23.66 52.77 81.88 55.69 65.33

2 40.99 34.99 39.96 17.65 27.62

3 39.45 36.08 44.24 16.63 28.48

4 66.72 63.43 56.55 22.27 39.63

5 62.75 63.85 53.25 23.08 38.02

6 11.09 16.54 17.65 11.37 14.51

7 17.74 53.49 83.56 58.29 69.27

M. Mortara et al. / Computers & Graphics 30 (2006) 185–196194
approximated volume of the remaining body component

can be checked in this direction.

In the proposed approach, we made no assumptions

on the method used to produce the human body model,

which can be either an acquisition or a modelling

process. Differences in the results depend, however, on

the type of input model.
In the case of a scanning process, the model is likely to

consist of a huge amount of points. The morphological

characterization which represents the first step of the

tube recognition on such dense surfaces is indeed more

precise. On the other hand, the mesh produced by the

triangulator associated to the scanner device usually

produces meshes with holes (e.g., due to occlusions

which might occur in correspondence of armpits), or

tends to join patches of surfaces which are separated but

very close in space (e.g., the base of fingers or of the

thighs). It is also true that usually human body scans

have been acquired in a standard posture, which sees the

human in a standing position, with legs and arms

straight and completely stretched, and closed fists. In

this case, it is not possible to get fingers as tubular

features. We used models captured from real humans to

prove the robustness of our algorithm to manage huge,

noisy, or corrupted models.

In the case of the generation of the virtual human by

the modelling act of a digital artist, the mesh quality is

very different: it obviously consists of much less points

and the surface is smoother. Generally, fine details

are not provided and the computed morphological



ARTICLE IN PRESS

Fig. 15. Tubular features of a human body model (left) and a

horse (right). Note the different length of upper and lower limbs

in the two cases; this measure can be used to discriminate

between biological species in a database.
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characterization is quite coarse; nonetheless, the tube

extraction is facilitated and much faster. Furthermore,

tube boundaries do not suffer of a poor mesh resolution

since intersection curves between the mesh and the

sphere used for the tube growing are inserted as

constraints to refine the mesh just in correspondence

of tube extreme boundaries. The virtual human pro-

duced by modelling usually assumes different postures,

which are set by the digital artist ‘‘by hand’’ using

skeleton-driven animation packages (see www.maya.-

com); moreover, details like fingers are usually well

formed. These models are interesting test cases to prove

the ability of our approach to capture human limbs in

arbitrary postures.

Another application of the proposed framework is the

automatic detection of landmarks on the body model. In

this case, the problem consists of deriving anthropo-

morphic features from a database of human models and

identifying meaningful landmarks [6,1,12] for applica-

tions to database indexing and matching, and for

animation purposes. Many of these features, such as

concavities at eyes and navel, tips of fingers, nose,

ankles, blends on armpits, and so on, are directly and

automatically detected by our method without requiring

a further user interaction.

The tube descriptors can be used also for identifying

human body models in a biological database: in fact, the

ratio between upper/lower limbs defines the ‘‘intermem-

bral distance’’ and has been long studied in biology as a

discriminant factor between bipedi and quadrupedi.

From experimental results, it is known that for human

beings this ratio is nearly 72, and can be easily applied to

digital models in a database to discriminate biological

species using our approach (see Fig. 15).

Finally, the extracted skeleton can serve as a basis for

building the animation control skeleton because many of

the joints and segments found by our method corre-

spond to segments of the control skeleton. Our method

could be especially useful for animating digital model of

real humans, because in this case it is much more

difficult to associate automatically a skeleton to the

model [13]. In this context, it is worth to say that

the Semantic Body Model is also compliant with the

requirements of the H-ANIM standard for representing

animatable human body in virtual environments [14].
6. Conclusions and future work

In this paper, we have proposed a framework for the

automatic segmentation of human body models and

their annotation with shape measures, based on a multi-

scale geometric and structural analysis. The proposed

approach is flexible, produces good results in the context

of virtual and real human bodies and supports a variety

of anthropometric analysis. The method has, however, a
wider applicability and can be used to characterize any

object with tubular features, as demonstrated in an

application to smart object characterization [15].

Our research on semantic annotation of body models

with anthropometric measures is currently focused on

methods to augment and optimize the quality of the

descriptors, exploiting the property of our framework of

being posture-independent. In the recent anthropo-

metric survey supported by the CAESAR project, the

scanning of human body has been conducted using three

postures for every individual: the standing posture and

two sitting postures. The standing and one of the sitting

are mainly aimed at gathering as many data as possible

for fully reconstructing the body, while the second

sitting position is used to measure data on how the

subjects are really sitting in a comfortable and natural

position. These data are very important for ergonomic

studies. Using the graph-based representation jointly

with a graph-matching technique, it is possible to match

parts of the semantic body model of the same individual

in the three different postures [16,17]. This would allow

in turn to devise geometric editing of the feature shape

and descriptors in order to optimize and augment the

measuring capability of the proposed framework.
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