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Blowing Bubbles for Multi-Scale Analysis and
Decomposition of Triangle Meshes!'
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Abstract.  Tools for the automatic decomposition of a surface into shape features will facilitate the edit-
ing, matching, texturing, morphing, compression and simplification of three-dimensional shapes. Different
features, such as flats, limbs, tips, pits and various blending shapes that transition between them, may be
characterized in terms of local curvature and other differential properties of the surface or in terms of a global
skeletal organization of the volume it encloses. Unfortunately, both solutions are extremely sensitive to small
perturbations in surface smoothness and to quantization effects when they operate on triangulated surfaces.
Thus, we propose a multi-resolution approach, which not only estimates the curvature of a vertex over neigh-
borhoods of variable size, but also takes into account the topology of the surface in that neighborhood. Our
approach is based on blowing a spherical bubble at each vertex and studying how the intersection of that bubble
with the surface evolves. We describe an efficient approach for computing these characteristics for a sampled
set of bubble radii and for using them to identify features, based on easily formulated filters, that may capture
the needs of a particular application.
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1. Introduction. Shape analysis and coding are challenging problems in Computer
Vision and Graphics. An ideal shape description should be able to capture and compute
the main features of a given shape and organize them into an abstract representation
which can be used to automate processes such as matching, retrieval or comparison
of shapes. We have tackled the problem in the context of three-dimensional objects
represented by triangular meshes, bearing in mind that a good shape description should
be able to distinguish between global and local features and should be based on geometric
properties of the shape which are invariant under rotation, translation and scaling [5].
To characterize a shape we have used the paradigm of blowing bubbles: a set of spheres
of increasing radius R;,i = 1, ..., n, is drawn, whose centers are at each vertex of the
mesh, and whose radius represents the scale at which the shape is analyzed. The number
of connected components of the intersection curve between each bubble and the surface
gives a first qualitative characterization of the shape in a three-dimensional neighborhood
of each vertex. Then the evolution of the ratio of the length of these components to the
radius of the spheres is used to refine the classification and detect specific features such
as sharp protrusions or wells, mounts or dips, blends or branchingparts.
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Fig. 1. Shape decomposition using blowing bubbles.

For example, a point on a thin limb will generate an intersection curve made of only
one component, which will rapidly split into two connected components as soon as the
radius of the sphere exceeds the limb size. Conversely, the tip of a protrusion will always
generate only one connected component, and the ratio between the intersection curve
length and the sphere radius can be used to evaluate how curved the surface is at the
protrusion tip. An example of the resulting decomposition is given in Figure 1.

The description achieved provides an insight on the presence of features together with
their morphological type, persistence at scale variation, amplitude and/or size. The algo-
rithm for the decomposition is concise and simple, and the decomposition is independent
on the orientation of the object in space and equally distributed in all directions. The
number of radii and the interval given by the minimum and maximum radius is related
to the spectrum of sizes of the features of interest. Moreover, the multi-scale approach
and the chosen descriptors reduce the influence of noise on shape evaluation.

In this paper we focus on the method adopted for segmentation, while a possible
application of the results can be found in [12], where a skeleton describing a shape from
the point of view of its sharpest protrusions is presented.

The paper is organized as follows: in Section 2 previous work relevant for the de-
scribed method is briefly reviewed. Basic concepts on differential geometry delineate, in
Section 3, the theoretical background of the geometric descriptors used. The approach
to shape classification is presented in Section 4.

Details of the algorithm are described in Section 5, while the mesh decomposition
strategy is discussed in Section 6. Finally, Section 7 includes critical considerations and
remarks.

2. Previous Work. An abstract description of a shape usually combines a set of prim-
itives that are relevant to the specific context, and is defined in terms of their type and
intrinsic shape parameters.
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As suggested in [11], methods for shape description can be classified into two broad
categories: those considering only the local properties of the boundary of the shape, and
those measuring properties of the enclosed volume. Typically, boundary-based methods
evaluate accurate and mathematically well-defined local characteristics, such as critical
points or curvature. They may also identify specific loci on the surface, such as curvature
extrema or ridges, but they generally lack in providing a global view of the shape.
Furthermore, they typically work at a single resolution and thus do not organize features
into a hierarchy of global and local details.

Conversely, interior-based methods, which assume that the surface is the boundary
of a solid, generally provide descriptions which highlight better the global structure of
the shape. Skeletons, such as the medial axis or the Reeb graph, belong to this class
of descriptors [1], [15], [17]. The great advantage of skeletons is that they provide an
abstract representation by idealized lines that retain the connectivity of the original shape,
thus reducing the complexity of the representation. Usually, each arc is associated with a
portion of the original shape that corresponds to a feature. For example, in two dimensions
the medial axis is constructed using the paradigm of the maximal enclosed disks, whose
centers define a locus of points which describes, together with the associated radius, the
width variation of the shape. The medial axis induces a decomposition of the shape into
protrusion-like features, while concavities of the shape are not directly identified by the
medial axis of the interior. Unfortunately, the medial axis of a three-dimensional shape
is no longer a one-dimensional graph, but is made of surface pieces as well. Moreover,
the instability of the medial axis with respect to noise has prevented its use in many
application areas. Approaches to construct and store the medial axis at different scales
have also been proposed, which implicitly address the problem of noise reduction as
well [15], [3], [14].

Another notable example of a topology-driven skeleton is given by the Reeb graph
[17], [1]. The Reeb graph is a topological structure which codes a given shape by storing
the evolution of criticalities of a mapping function defined on the boundary surface. In
particular, when the height function with respect to a predefined direction is chosen,
the Reeb graph describes the evolution of the contours obtained by intersecting the
shape with constant planes. The decomposition induced by the Reeb graph corresponds
to a segmentation of the solid into slices and the corresponding branches of the Reeb
graph identify the connected components of the surface. The description obtained using
a Reeb graph approach is suitable for matching purposes especially if the mapping
function is chosen in order to provide invariance under affine transformations. Such
orientation-independent approaches have been proposed in [9] and [12]; however, they
are computationally intensive and offer little control over the scale at which the shape is
analyzed. We propose here an alternative and more efficient approach that gives us more
flexibility to formulate the filters for shape analysis, and captures the more representative
properties in a more detailed description.

3. Theoretical background. This section provides definitions and concepts [7], [10],
[13] useful for describing our approach. Let x: D € R? - R be a C2-parameterization
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of the surface
Y = {x(u,v): (u,v) € D}.

The classification of local properties of X is traditionally based on the study of the mean
and the Gaussian curvature, which can be respectively defined as the average and the
product of the maximum and minimum principal curvatures [10].

We consider the normal » to the surface ¥ at a point p, and the normal sections of the
surface around the normal vector, that is, the set of curves originated by intersecting the
surface with planes containing the normal n. For each of these planar curves the curvature
is classically defined as the inverse of the curvature radius. If we call k| the maximum
curvature of the normal sections, and k, the minimum, then the mean curvature k is
defined as ¥ := (k| + k»)/2 and the Gaussian curvature as K := «j«;. The directions
along which the extrema of curvature are assumed are called the principal directions. This
definition formalizes the relation between the surface shape and its position with respect
to the tangent plane. For example, for elliptic-shaped surfaces, the centers of curvature
of all the normal sections will lie on the same side of the tangent plane, with positive
values for the minimum and maximum of curvature. For hyperbolic-shaped surfaces, the
centers of curvature will move from one side of the surface to the other, with a negative
minimum value and a positive maximum value assumed at opposite sides with respect to
the tangent plane. Finally, for parabolic-shaped surfaces, one of the principal directions
will have curvature equal to zero, that is, along that direction the normal section will be
a straight line. This is the case, in general, of ruled surfaces which are also said to have
no double curvature. The planar case is obvious.

The Gaussian curvature represents a measurement at any point p of ¥ which is the
excess per unit area of a small patch of the surface, i.e. how curved it is. An interesting
result is due to the Gauss-Bonnet theorem, which is introduced as follows. First, given a
closed curve y on a surface X, let 7,, be the total turning that the unit tangent # undergoes
when it is carried along y, defined as the sum of the local turnings, i.e. exterior angles
[10] (see Figure 2). Then the quantity I, = 27 — T, is called the angle excess of the
curve y and itis related to the curvature of ¥ within y, as described by the Gauss—Bonnet
formula.

GAUSS—-BONNET THEOREM 1. Let y be a curvilinear polygon of class C* on a surface
patch of class C*, k > 3. Suppose y has a positive orientation and its interior on the
patch is simply connected. Then

(D /Kgds+f/KdS=2n—Zai=Iy,
Y Q i

where kg is the geodesic curvature along y , 2 is the union of y and its interior, K is the
Gaussian curvature, o; is the exterior angles of y and ds and d S are the curve and line
elements, respectively.

Among the properties of the angle excess the following ones have a particular interest
for our approach:

e [, is independent of the chosen starting point on y;
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e [, is additive;
e for any topological disk on an arbitrary surface at p, the angle excess around the
boundary is equal to the total curvature of the interior.

The definition of the curvature at each point of a triangulation is not trivial because
a triangular mesh is parameterized by a piecewise continuous function whose second
derivatives are, almost everywhere, null. In other words, the curvature on a triangulation
is concentrated along edges and at vertices, since every other point has a neighborhood
homeomorphic to a planar Euclidean domain whose Gaussian curvature is null. The
methods proposed in the literature for curvature evaluation can be classified in different
ways but a global comparison among them is still lacking as underlined in [4], [6],
and [19]. These methods can be divided into two main groups: continuity-based and
property-based algorithms.

The first ones are developed, transforming the discrete case to the continuous one by
using a local fitting of the surface which enables us to apply standard definitions. For
example, in [8] an approximation is derived at each vertex by applying the continuous
definition to a least-square paraboloid fitting its neighboring vertices, while in [18] it
is evaluated by estimating its tensor curvature. The second class of algorithms defines
equivalent descriptors starting from basic properties of continuous operators but directly
applied to the discrete settings. The methods proposed in [2] and [16] are based on the
Laplace—Beltrami operator, the Gauss map and the Gauss—Bonnet theorem, guaranteeing
the validity of differential properties such as area minimization and mean curvature
flow [7].

For example, the angle excess can be used to evaluate the Gaussian curvature at
mesh vertices [4], [16]. Let us consider the region Star(p) on the mesh defined by the
triangles incident in a vertex p (see Figure 2). The boundary of Star(p) defines a closed
path on the mesh, to which we may apply the Gauss—Bonnet formula (1). Since the
geodesic curvature along the boundary is obviously zero (edges are straight), the total
curvature at p is simply quantified by the sum of the exterior angles. To understand
better the geometry of the situation, we can imagine locally cutting Star(p) along any
of the edges incident in p, and developing Star(p) onto the plane without shrinking
the surface. The sum of the exterior angles corresponds to the sum of the angles at p
in Star(p). This result is consistent with the intrinsic nature of the Gaussian curvature
since the angle excess only depends on the angles, that is, this value does not change if
the mesh is deformed preserving the distance between points. Also, computation of the

Fig. 2. Star(p) is enclosed by a curve y. The exterior angles {«;} and interior angles {«;} are shown.
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Fig. 3. Discrete Gaussian curvature and sensibility to local noise: red and blue vertices represent elliptic and
hyperbolic points (see electronic version for color figures).

angle excess can be performed without resorting to any coordinate system, as the angles
may be obtained using only the edge length and not the vertex coordinates. The discrete
Gaussian curvature at a vertex p of the mesh can be therefore evaluated by

21T — Z?EI? faces o
= A ,
that is, the local angle excess in p weighted by the area A of a small patch of surface
around p given by Star(p) or by some subregion of it containing p (see Figure 2).

The approaches mentioned are usually sensitive to noise and, even if a multi-resolution
setting is chosen, they usually require smoothness conditions on the input mesh. Fur-
thermore, the smoothing process used to get stable and uniform curvature estimations
introduces a deficiency in magnitude evaluation and, consequently, difficulties in ac-
curate distinction between planar patches and curved surfaces with low curvature. In
Figure 3 evaluation of the curvature, using the area of Star(p) as weights, is shown. It
can be seen how the results are affected by small local undulations.

©)) Kg

4. Geometric and Topological Classification. The approach proposed here for de-
scribing a three-dimensional shape integrates boundary and interior information of the
shape finalized at defining a complete multi-scale vertex classification. The link between
closed paths and curvature has suggested specializing its study to the family of closed
paths built by intersecting the surface with spheres centered in each of its points. Study
of the evolution of these curves and the geometric characterization of the mesh areas
intersected by the spheres are the core of the proposed method. The topology of the
intersection curves changes according to the object shape: in Figure 4(a) the highlighted
sphere intersects the surface only at one curve, while in Figure 4(b) the boundary of
the intersection area splits into two connected components. This is likely to happen, for
example, near handles and branches, or around deep pits. Therefore, the variation in the
boundary suggests that the vertex is located on a feature, which becomes relevant at the
scale, or radius, at which the change occurs.

Given a set of radii R;,i = 1,...,n, each vertex of the mesh is classified with
an n-dimensional vector of morphological labels, each corresponding to its type at the
related scale. Shape features of the mesh are then identified by connected regions of
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(@ (b)

Fig. 4. The evolution of intersection for increasing radii.

vertices with the same label at a given scale, and the geometric parameters computed to
assign the label will characterize the feature. For example, a tip and a mount are both
characterized by one intersection curve, but they can be distinguished by measuring the
curvature induced by the intersection curve on the surface (see Figure 5).

Features which are identified by two intersection curves are further characterized
by measuring the relative curve length and by checking if they define a volume which
is inside or outside the shape (see Figure 6). The vector of labels and corresponding
geometric parameters, together with the persistence of type through the scale values, are
used to distinguish between global and local features with respect to the scale range.

Given a point p, a scale R; and the corresponding intersection curve y (p, R;), the
point p is classified according to the number of connected components of y (p, R;),to the
curvature value if y (p, R;) has only one component, or to the relative length if y (p, R;)
has two components, and according to a concavity/convexity check in all cases.

The classification criteria lead to a complete characterization of vertices, which ex-
presses both geometric and morphological properties of the surface. As far as this paper

(@ (b)

Fig. 5. A tip detected at a small radius (a) will be characterized as a mount at a larger radius (b).
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(a) (b) (©

Fig. 6. A handle (a) is distinguished from a through hole (b), (c).

is concerned, only the decomposition is fully described with less emphasis on the con-
struction of the region adjacency graph which encodes the segmentation. In the following
the main steps of the classification procedure are detailed and the descriptors used to re-
fine each class are introduced. We distinguish between geometric descriptors, which are
the surface curvature and the relative length of the intersection curves, and the so-called
status descriptors which distinguish between concave/convex or empty/full features.

4.1. Classification Based on Intersections. Given a three-dimensional mesh ¥ and a
setofradii R;,i = 1, ..., n,let S(p, R;) be the sphere of radius R; and center p, and let
y (p, R;) be the boundary of the region of ¥ containing p delimited by the intersection
curves between the mesh and S(p, R;). Other regions of intersection might occur, but
only the one containing p is taken into account. The first morphological characterization
of the surface at a vertex p at scale R; is given by the number of connected components
of y(p, Ri).
We consider the following cases:

e one component: the surface around p can be considered topologically equivalent to a
plane (see Figure 7(a)),

e two components: the surface around p is tubular-shaped (see Figure 7(b)),

e three or more components: in a neighborhood of p a branching of the surface occurs
(see Figure 7(c)).

In topological terms, two components identify a handle in the object, three or more
components highlight a split. If y (p, R;) is made by one component, the angles excess
is computed and the vertex is classified as sharp, rounded or blend (see Section 4.2) .
If y(p, R;) is made by two components, their lengths are used to distinguish between
conic and cylindrical shapes. For branching parts, no further geometric parameters are
computed (see Table 1 on p. 242).

To run the process, a set of radii must be selected for the computation of the inter-
sections. The maximum and minimum radii (Rpnax and Ryin, respectively) determine an
interval which is uniformly sampled according to the number of radii the user wants to
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(a) (W) (©

Fig. 7. Different number of connected components in the intersection boundary.

use. This step produces the valuesof R;,i =2, ..., n—1(R] := Ruyjn and R, := Rpax)-
Both Ry, and Ry« can be defined by the user by means of a slider in the Graphical
User Interface; otherwise, they are automatically set proportionally to the size of the
object. In this latter case, Ry, is set to the minimum edge length and Ry« to half of the
diagonal bounding box of the object. The choice of the radius range obviously influences
the classification results because it defines the number and sizes of neighborhoods used
to analyze the surface shape around each point. In this sense, a priori knowledge about
the feature size of interest surely improves the decomposition.

4.2. Curvature Characterization. As described in Section 3, when y (p, R;) has only
one boundary component, the curvature at the point p, at scale R;, is the angle excess of
y(p, R;). Instead of using the angle excess, we use the length of y (p, R;) divided by the
radius R;, i.e. L, (, r,) = length(y(p, R;))/R;. Note that this value has the dimension
of an angle and it always assumes a positive value. Since we want to characterize the
curvature of a surface, vertices will be labeled as sharp, rounded or blend points according
to their approximated curvature values by establishing some thresholds on the interval
[0, +00). We can distinguish the following cases:

e Sharp vertices: we consider a conic surface, with spike point p and o € (0, 7w /2]
the half amplitude of the cone. Intersecting the cone with a sphere centered in p and
with radius R; generates a circular curve of length 27 R; sin(a) with L, (p, R;) =
27 sin(a), which is an increasing function of o € (0, 7 /2]: the lower the value of «,
the more the surface around p tends to a cone-shaped point. Intuitively, we consider
p a sharp vertex if ¢ < m/4 and consequently the curvature threshold is set to
T, = V/27.

e Rounded/blend: to distinguish between these two situations we observe that the surface
is rounded in a neighborhood of a point if its curvature is positive while a blend occurs
when the surface is hyperbolic, that is, its curvature is negative. The limit case between
the two is obviously a flat point and, considering that we use L, (, g, to evaluate the
curvature, it is clear that setting the threshold to 7, = 2 discriminates between
rounded and blend . The intersection between the sphere and a plane, indeed, results
in an intersection curve whose length is equal to 27 R;.
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Fig. 8. Several cases of one intersection curve: note the relation between the intersection curve length and the
curvature of the surface in the neighborhood of the center of the sphere.

Summarizing, the characterization of a point p at scale R; is set as follows:

e 0=<L,(p,R) = V27 pis sharp,
o V21 < L,(p, R;) <2m: pis rounded,
o L,(p,R;) >2m: pisablend.

For example, see Figure 8.

4.3. Relative Length Characterization. Now consider the case of two connected com-
ponents in the intersection curve y (p, R;). As mentioned above, this means that p lies
on a region of the surface which appears as an elongated shape at that scale, like a tubular
protrusion or a handle in the object. We can refine this remark as follows: if the length
of the two intersection components is nearly the same, the shape at the scale R; can be
approximately considered cylindrical; if one is much longer than the other, it means that
the shape may be seen as a conic part (see Figure 9). Let y; and y; be the two intersection
components, and let /; and /, be their lengths with /; > I,. The shape is considered con-
ical if [} > 2I,, cylindrical otherwise. The related threshold is 7, = % which guarantees
that the amount /5 /[; (belonging to [0, 1]) uniquely determines whether the local shape
of the surface around p is cylindrical or conic.

4.4. Status Characterization. The extraction of morphological features on a surface is
based on different operators, each related to a different aspect or property of the related
feature. Up to now, we have seen how to distinguish between sharp or rounded, tubular or
branching and so on, while the status characterization allows us to distinguish between
convex/concave or, more generally, full/empty features. For instance, to discriminate
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Fig. 9. Example of cylindrical (a) and conical (b) parts of a triangular mesh.

between convex and concave vertices would lead to refining the classification of a sharp
point as a tip or a pit, a rounded point as a mount or a dip. Obviously, the distinction
between convex and concave does not make sense for blend points. For vertices on tubular
features, that is, with two or more connected components in y (p, R;), it is checked if
the surface intersected by the sphere encloses a volume which is inside or outside the
object (see Figure 6). In this case the status characterization allows us to distinguish a
handle from a deep tubular depression of the object.

We consider the status characterization in the case of one component first. As for
curvature computation, concavity/convexity evaluation at a vertex p of a triangular mesh
is highly affected by local noise in Star(p). The local geometry is depicted in Figure 10:
a given edge e shared by triangles #;, #, of a mesh is convex (resp. concave) if the angle
formed by 11, t,, inside the object, is less (resp. more) than .

Consequently, a given vertex p is defined strictly convex (resp. strictly concave) if all
the incident edges in p are convex (resp. concave). Because in most cases the incident
edges in p are both convex and concave, the previous classification cannot be applied.
Note that even a slight modification of the point coordinates can produce a complete
different classification. For these reasons, the method adopted for assigning a convex or
concave label to a vertex p at scale R; again uses the intersection between the mesh and

Fig. 10. Edge concavity or convexity criterion.
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Fig. 11. Configuration of the intersection curve normals around a concave point.

the sphere. In the case of one connected component of the intersection curve, the center
of mass b of y and the average normal N of the intersected triangles are computed. The
vertex p is considered concave (resp. convex) at scale R;, if p lies below (resp. above)
y, thatis, N e (b — p) > 0 (resp. < 0), where “e” denotes the inner product. We refer
to Figure 11 for an easier understanding.

Suppose now that y (p, R;) has two intersection components. Again we can distin-
guish between the case in which the local shape is a tubular protrusion or a tubular
well of the surface (see Figure 6(a),(b)), in analogy with the property of convex/concave
mentioned above for points generating one intersection curve.

If the number of connected components of the intersection curve is two, as in Fig-
ure 12(a), we consider the orientation of each component of y (p, R;) as naturally induced
by the surface orientation (see Figure 12(b)). If p lies on a tubular protrusion of the sur-
face, it happens that the normal vector of the average plane related to each connected
component of y (p, R;) is directed towards p (see Figure 12(c)) according to the right-
hand rule; if p appears on a tubular depression of the object, the vectors have opposite
directions. This statement holds for three or more connected components too, thus it is
possible to discriminate between a branch on the outer surface or a splitting cavity.

(a) (b) ()

Fig. 12. Situation in which two orientation curves are generated: (a), (b) curve orientation derived by triangle
orientation, and (c) average normal of intersecting curves.
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5. Algorithm and Implementation Details. This section deals with the implementa-
tion details of the algorithm used for the sphere—mesh intersection, which is the core of
the shape characterization. Throughout the discussion we refer to the pseudo-code given
at the end of the section.

The mesh is encoded by means of a triangle-based data structure which stores:

e for each triangle, its three vertices and its three adjacent triangles, which represent the
Triangle—Vertex (T V') and Triangle-Triangle (7' T) relations, respectively,
e for each vertex, its coordinates and one (arbitrary) of its incident triangles (V T¥).

Actually the Vertex—Triangle relation (V T) associating to a vertex all its incident
triangles is necessary to navigate the mesh, but the memory space required can be
strongly optimized by coding just one of those triangles per vertex (partial Vertex—
Triangle relation or VT¥). The total VT relation can be retrieved in linear time by
iteratively applying the 7T relation starting from the stored triangle. A scheme of the
data structure is given in Figure 13. The storage of this data structure requires 3ny *
sizeof (float) 4+ 6 x ny * sizeof (int) + ny * sizeof (int), since vertices and triangles occur
inthe TT, TV and VT structures as integers.

For each vertex v the computation of the intersection curves between the mesh
and a set of n spheres centered in v with increasing radii Ry, ..., R, is computed as
follows:

e One of the triangles incident in v is inserted in the queue Q (this operation takes
constant time if we have the V T* data structure) and it is marked as visited.

e A triangle t is extracted from Q and the main loop is repeated until Q is empty.

e The algorithm checks if the spheres intersect ¢: for each radius R;, if at least two vertices
p, g of t, distinct from v, satisfy the conditions || p—v||» < R;, ||g—vll2 = R;,tisinter-
sected by the sphere S(v, R;). This operation takes constant time. In this case, ¢ is con-
sidered as a seed triangle for tracing the whole line of intersection whose continuation

i i|n‘m

NV NT NT

Fig. 13. Data structure organization: the information for the vertex v; and the triangle #; are shown.
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eP

Fig. 14. Approximated length of the intersection paths.

is searched in the triangles adjacent to ¢. The function intersection is thus invoked to
complete the intersection curve starting from # and moving to its neighbors intersected
by S(v, R;). The curve t N S(v, R;) is calculated considering the intersection points
between the sphere and each edge of ¢. More precisely, given an edge [a, b] of ¢, we can
parameterize itas u(s) := sa+ (1 —s)b,0 < s < 1; the intersection points, if any, are
located as u(sg), u(s;) with 5o, s1 solutions in [0, 1] of the equation ||u(s) — v ||§ = R?
of degree two in the unknown s. As shown in Figure 14, the length of y (v, R;) is the
sum of the composing arc lengths, each one belonging to an intersecting triangle, and
given by R;0 where 6 is the angle apb, a, b being the intersection points. The call of
this function increases the number of connected components of the intersection line
for a given radius. Moreover, the neighbors of the intersection triangles traversed but
not marked, that is, those which lay outside S(v, R;) but inside S(v, R,), are inserted
in Q.

e If 7 is not an intersection triangle and it lies inside the sphere of maximum radius
S(v, R,), its neighbor triangles (if not marked) are inserted in Q. otherwise, it is
simply discarded.

The construction of a connected component of the intersection line may take as many
constant operations as the number of intersection triangles, i.e. O (n7) in the worst case.
However, in this implementation each triangle is visited only once: marking triangles
when they are inserted in Q avoids considering them more than once, and the intersection
triangles traversed during the execution of infersection are not stored in Q. Therefore,
the main loop takes O (nr), thatis, O (ny); doing this operation on the whole mesh takes
O(n%,) time. Note that if the step between the radii is small with respect to the average
edge length, a triangle can be easily intersected by more than one sphere, and the function
intersection could be invoked on the same triangle as many times as the number of radii.
Anyway, once the number 7 of radii is chosen this is a constant value, so that the loop
(L) does not increase the complexity.
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main() {
Q=0
(# connected comp. for R;) = 0;
forallv e V {
Q «— TV*(v);
// main loop
while(Q #£ 0) {
t = first element removed from Q;
(L) for (R, = Ry,..., R,)
ifQv,v, €eTV(®) : lv—ul2 < R;
& lv—vulla = Ri) {
intersection(t, R;,v);
(# connected comp. for R;) ++ ; }

}

forallty, e TT(¢)
if(z; isnot marked & (Fv; e TV (t;) : |lv — vl < R,)
0 «~—t;

}

intersection(z,R;,v) {
L;= intersectionLength(t,R;,v);
Thext = 1
do {
thext =4 € TT[thexd] : i NSV, R) =0
L; += intersectionLength(t,ey:,R;);
if(#; is not marked & (Av; € TV (j, i) : [lv — v|| < Rmax))
0 <«—1t;

} while(#yext #1);

6. Mesh Decomposition. The focus of this section is the integration of the different
characterizations, described in Section 4, to achieve a unique segmentation of the input
mesh into morphological features represented by closed regions with uniform properties.
In Table 1 a summary of the labels assigned to vertices, for a given scale R;, is shown.
After the label assignment, the input mesh is decomposed into patches using a region-
growing procedure, and each patch corresponds to a shape feature relevant at scale R;.

The morphological classification associates a vector of feature labels to each vertex,
and each label describes the vertex at the corresponding scale. Selecting the scale of
interest, the surface can be rendered using a color-coding of the feature labels. The
achieved decomposition is an affine-invariant segmentation into disjoint, non-empty
subsets which code the geometry and shape evolution through scale changes. In Figure 15
an example is shown; the different views display the mesh decomposition at different
scales, and the colors are those related to Table 1 (color figures are available in the
electronic version of the paper).
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Table 1. Morphological feature characterization.

Label Feature Color #N Geometric Status
T TIP Red 1 L/R; <T; Convex
P PIT Blue 1 L/Ri <T; Concave
M MOUNT Orange 1 Ts < L/Ri <Tp Convex
D DIP Cyan 1 Ts <L/R; <Tp Concave
B BLEND Pink 1 L/R; > Ty —

L LIMB Yellow 2 Ly/Ly > T, Full
W WELL Violet 2 Ly/Ly > T, Empty
J JOINT Brown 2 Ly/Ly < T, Full
F FUNNEL Gray 2 Ly/Ly < T, Empty
S SPLIT Green >3 - Full
H HOLLOW-Y Black >3 - Empty

The tools defined are used to analyze a shape at different scales, but they can also
be used to derive information about the persistence of a shape feature across the scale
range. It is also possible to define a basic query language which allows us to extract fea-
tures defined by the user as relations between morphological labels at different scales.
For example, there has been defined a coarse feature-based query language, which al-
lows the user to submit a query like “which are the vertices whose feature type is
TIP at scale R3; and MOUNT at scale Rs?” To this purpose, a query vector with wild
card vy, where v, [i] specifies the requested feature type at scale R;, and the AND/OR
Boolean operators are used. For instance, suppose we used a set of ten radii; the vector
[*,%,T,%,* M, * * * *] with the AND operator specify the previous query. Here, feature la-

Fig. 15. Shape segmentation on the pot at different scales.
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Query Vector:
OR) LLLLLLL***

Query Vector:
AND) MMMMMMMMMM

Query Vector:
OR) =*(LJYLJYLIH{LI)y=**

a0
_‘B Query Vector:
/' OR) PPPPPPPPPP

Fig. 16. Queries with matched points are depicted in red. (See electronic version.) The use of AND and OR
operators among the scales is specified before the label vector. The round parentheses between labels work as
OR between features at the same scale.

bels are those in Table 1, and the symbol “*” means that, at that scale, each feature type is
allowed.

The combination of morphological labels with logical operators enables the construc-
tion of a high-level language for shape interrogation guaranteeing a multi-task model. In
fact, the user is able to extract a single shape element using a single query, to combine
them and, after future improvements, to modify the geometry locally, by using other
surface patches, or modifying the topology by changing the structure of the adjacency
graph which codes the shape decomposition.

The results obtained (see Figure 16) suggest that further improvements of the query
language will allow the extraction of higher-level features, like handles or main body
of a given object. Tubular components can be extracted choosing LIMB OR JOINT
vertices; among them, handles correspond to cycles in the region adjacency graph, and
protrusions are adjacent to TIP or MOUNT zones. Selecting points which assume TIP
OR MOUNT OR DIP OR BLEND features at most levels of detail identify the main
body of the object, and so on. Using the described language, a mesh can be analyzed in
a rather flexible way.
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(@ (b)

Fig. 17. Persistence analysis of the number of intersection curves (a), and its refinement using geometric
information (b).

Instead, if we are willing to extract a global shape description which takes into account
the whole range of scales into a single decomposition of the mesh, the following voting
algorithm for persistence can be used. First, the points are classified according to the
intersection connectivity, that is, according to the number of single, double or multiple
components in the intersection boundary, considering the whole range of scales. The
mesh is therefore segmented in parts which are characterized by having either almost
always one intersection or two or more. This step provides a first insight on features
which are persistently protrusion-like, handle-like or branch-like, without distinguishing
if they are convex/concave or full/empty. In Figure 17(a) the result of this segmentation
is shown, where the blue parts are composed by vertices having only one intersection
for more than 75% of the scales, the red are those having two intersections for the same
threshold. Finally the gray areas are those corresponding to shape transitions where both
one and two intersections occur approximately in the same percentage.

Within each of the resulting parts, a further classification can be done considering
the related geometric characterization. For example, in Figure 17(b) the shape vertices
are colored with different blue saturations depending on the curvature; a darker blue
corresponds to a higher curvature. An analogous criterion is applied to vertices with two
intersections using their relative length where a lighter red is related to cylindrical-like
features. With regard to the choice of the threshold for the persistence analysis, the value
has to be tuned according to the number of radii used. In our experiments we used an
average of ten radii and the value 75% provided good results. A threshold bigger than
75% has also been used, and it results in a stricter selection of patches with one or two
intersections; this choice generally enlarges transition areas.

7. Method Insights. In this section results and properties of the shape characterization
are discussed, focusing on the comparison between the multi-scale and the persistence
analysis. Examples of an application of this method for skeleton extraction are also given.

First, we discuss the behavior of the curvature evaluation using different scales. The
curvature is analyzed in a neighborhood whose size depends on R;: for small values of
R;, such as the average length of the edges incident in p, the curvature approximation
resembles the discrete curvature estimation proposed in [2] and shows similar problems
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(@) (b) (©

Fig. 18. The point classification corresponding to R; chosen as the minimum edge (a): red and blue vertices
locate elliptic and hyperbolic points while the green line visualizes the theoretical parabolic line (see electronic
version); the results obtained with radius 2R; are shown in (b), (¢).

while, for increasing values, it becomes more stable to noise. We have tested the behavior
of the curvature on smooth and rough surfaces, as follows.

The first test surface used is a torus and the multi-resolution curvature has been
compared using two radii: R; equal to the minimum edge of the input mesh and 2R;.
Curvature values achieved with R; corresponds to the theoretical point classification
into parabolic, hyperbolic and elliptic regions on the torus (see Figure 18(a)). Increasing
the radius to 2R; results in a similar classification where parabolic points, identified
as the boundary between hyperbolic and elliptic ones, are shifted with respect to their
theoretical position represented by the green line (see Figure 18(b),(c)).

The shape decomposition has been tested for stability to noise also on a rough surface.
In Figure 19(a),(c) the results obtained on the rabbit and on the same data set with added
noise are compared. The main features, like tips and limbs, are preserved and the influence
of the thresholds involved is lessened by the persistence analysis (see Figure 19(b),(d)).

The multi-scale decomposition depends on the chosen set of radii, and, on one hand,
a too small radius leads to noise problems, but, on the other hand, a too large radius
can give a meaningless result. Small radii can be used to determine detail features
while bigger ones are able to capture the global characteristics of the surface. From these
considerations, it follows that the choice of R; is related to the scale of the features which
have to be extracted, and the use of a set of increasing radii is suitable for performing a
multi-scale analysis of the shape.

Multi-scale analysis can also be used for a generic segmentation of the surface accord-
ing to the curvature evaluation, by grouping those points which share a similar curvature
value with respect to a given threshold ¢ and a radius R;, i.e.

D, q belong to the same patch <= |L, (p, R;) — L, (q, R))| < &.

This approach is commonly applied by segmentation methods based on curvature. De-
pending on the type and complexity of the shape to be analyzed, the simple curvature
evaluation may give better results than the refined segmentation. The segmentation de-
scribed by the labels in Table 1 corresponds, indeed, to a decomposition into protrusion-
like and handle-like features which might not be relevant for certain shapes. As shown
in Figure 20, shapes composed by detailed and unstructured features are better analyzed
by multi-scale curvature evaluation, because in such case a decomposition into features,
such as limbs and tips, is not meaningful.
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(©) (d)
Fig. 19. (a), (b) Shape segmentation and persistence analysis on the original rabbit, and (c), (d) on the model
with added noise. Segmentations achieved based on persistence analysis are nearly identical.

8. Conclusions and Future Work. The evolution of intersection curves produced by
blowing bubbles at mesh vertices has been proved to be a good approach to characterize
a shape using meaningful shape features. Increasing the radius of the bubbles produces
an easy and efficient multi-scale analysis of the shape, which can be effectively used to
produce a set of specific and flexible tools for shape analysis. The resulting description is
an affine-invariant segmentation of disjoint, non-empty subsets and equally distributed
in all directions, which codes the geometry and shape evolution through scale changes.
Finally, the decomposition is computationally affordable and consistent with previous
work on these topics.

Fig. 20. Feature decomposition on the dragon at three different scales.
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() (b) ()

@ (e)

Fig. 21. Global framework: (a) curvature estimation on the horse with different radii, (b) peak regions are
extracted with a query, (c) regions selected in (b) are used as seed points for extracting the skeleton, (d), coarse
persistence analysis, (e) refined persistence analysis.

The usefulness of the description obtained goes beyond the problem of shape de-
composition and we believe it will serve as a basis for building effective tools for shape
processing and editing. For example, it has already been used to find the seed points
for the construction of an affine-invariant skeleton [12] which represents the input for a
wide class of applications, such as matching and topological characterization of three-
dimensional shapes. Figure 21(a)—(c) shows all the steps of the construction.

Future developments will focus mainly on the specification of the feature adjacency
graph and on the study of its evolution within the scale range required.

Acknowledgements. Special thanks are given to the Computer Graphics Group of
IMATI-GE/CNR.
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