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Giuseppe Patanè, Michela Spagnuolo and Bianca Falcidieno

Istituto di Matematica Applicata e Tecnologie Informatiche, Consiglio Nazionale delle Ricerche, Genova, Italy

Abstract
This paper describes a novel approach to the parameterization of triangle meshes representing 2-manifolds with
an arbitrary genus. A topology-based decomposition of the shape is computed and used to segment the shape into
primitives, which define a chart decomposition of the mesh. Then, each chart is parameterized using an extension
of the barycentric coordinates method. The charts are all 0-genus and can be of three types only, depending on
the number of boundary components. The chart decomposition and the parameterization are used to define a
shape graph where each node represents one primitive and the arcs code the adjacency relationships between
the primitives. Conical and cylindrical primitives are coded together with their skeletal lines that are computed
from and aligned with their parameterization. The application of the parameterization approach to remeshing
guarantees that extraordinary vertices are localized only where two patches share a boundary and they are not
scattered on the whole surface.
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1. Introduction

The parameterization of 2D manifold triangle meshes has
been largely analyzed in Computer Graphics due both to its
theoretical importance for surface classification and impact
on applications such as texture mapping, compression and
animation. While the parameterization of manifolds homeo-
morphic to a disk is well understood, the case of surfaces with
an arbitrary genus is still a very challenging research topic.
This problem is usually approached in two different ways:
either the surface is decomposed into a family of disk-like
patches (i.e. local parameterization, or atlas generation), or a
cut is defined on the manifold which is successively unfolded
onto a unique planar domain (i.e. global parameterization).

Our goal is to devise an atlas generation method for 2-
manifold triangle meshes of arbitrary genus, which produces
a canonical decomposition of the shape, a minimal number
of charts, a flexible decomposition schema able to capture the
most interesting shape features and a coding of the parame-

terization which is useful for applications such as editing or
deformation.

The crux of the proposed method is the exploitation of
the information about both the surface topology for optimiz-
ing its decomposition and cutting, and the surface geometry
for minimizing the parameterization distortion. The use of
topological information provides evident benefits in all sub-
sequent stages of the parameterization and its applications.
The proposed approach is applied to remeshing, and produces
remeshed shapes whose extraordinary vertices (i.e. with va-
lence different than six) are localized on smooth boundaries
where adjacent patches join, and they are not scattered on the
surface as in previous work.

1.1. Related Work

First of all, for a complete survey on the parameterization of
surfaces with genus zero, we refer to the following papers
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784 G. Patanè et al./Graph-Based Parameterization of Triangle Meshes with Arbitrary Genus

[1–3], which contain an extensive discussion on the basic
principles and methods of parameterization. Here, we briefly
review the achievements in the field which are more relevant
to the work presented in the paper.

Local parameterization methods build a segmentation of a
mesh into patches homeomorphic to a disk, and then map each
of them into the plane by a local convex-combination map.
The properties of the segmentation usually depend on the ap-
plication of the parameterization: for example, for remesh-
ing or morphing purposes, triangle-shaped or quadrilateral-
shaped patches are often used to build the base mesh, as
they well support subdivision schemes and spline-based rep-
resentations [4–6]. The main problems to be solved are the
smoothness of the mapping across the patch boundaries, the
control over the shape and the number of patches, which, for
complex shapes, may produce a large number of small charts
with simple borders.

The segmentation of a surface M into a family of disk-
like regions uses algorithms for mesh decimation [7], e.g.
vertex-removal or half-edge-collapse, where the simplified
triangular mesh MS ⊆ M approximates the shape of M, shar-
ing the same genus and provides a correspondence between
the points of M and MS. The number of patches is equal to the
number of triangles in MS, and the simplification is guided
by a set of criteria and runs until the coarse mesh is as simple
as possible without violating quality measures, which aim to
reduce the distortion of the embedding.

The least-squares conformal map proposed in [8] attempts
to align patch boundaries with lines of significant curvature
over the shape and produces patches with arbitrarily shaped
boundaries. Each patch is then parameterized using a quasi-
conformal parameterization method, based on the minimiza-
tion of angle deformations. The approach is robust and can
parameterize large charts with complex borders.

In general, an oversegmentation can create distortions
along the boundaries of adjacent regions which affect the
texture mapping and remeshing results, in spite of local ad-
justments (e.g. smoothing, re-sampling, constrained bound-
aries).

The decomposition of the input manifold into a set of ar-
bitrarily shaped patches enables to remesh each chart with a
regular subdivision, which cannot be extended to the entire
surface due to the induced irregular covering of M; therefore,
they achieve only a semi-regular remeshing.

Alternatively, an arbitrary surface can be unfolded into a
single planar domain, by cutting the surface along a con-
nected path [9]. Using a single patch allows to apply regular
remeshing and to achieve high compression rates; however,
it can create parameterizations with greater distortion and a
less uniform sampling with respect to the use of multiple lo-
cal charts. This phenomenon is mainly due to the difficulty
of finding a good cut and of controlling its alignment with

sharp features (e.g. high-curvature lines); furthermore, the
construction of the cut can create complicated and noisy line
networks for unfolding surfaces of high genus.

The computation of a global conformal parameterization
of a surface with an arbitrary genus without segmentation
has been studied in [10]; the method exploits simplicial ho-
mology to slice and open the input mesh which is succes-
sively mapped onto the plane. Specialized parameterization
of 0-genus surfaces onto a spherical domain are discussed in
[11,12].

Existing methods are mainly driven by considerations con-
cerning texture mapping and compression as primary appli-
cation of the parameterization results. Therefore, the patches
are generally not related to features of the surface, and the
number of generated patches is mainly driven by error or dis-
tortion metrics. In this paper, we present a novel approach in
which the parameterization process is guided by the shape
of the triangle mesh, by its topological properties, and by
the aim of building a centerline skeleton, aligned with the
parameterization and which can be used for animation and
deformation in a straightforward manner.

1.2. Overview and Contributions

Our approach builds on the shape decomposition method de-
fined in [13,14], which uses the concept of quotient space
introduced by Reeb [15,16] to classify manifolds under the
action of a real smooth mapping function f . The mapping
function induces a segmentation of the manifold into cells,
or primitives, related to the critical points of the function.
Each cell is 0-genus and only three types of patches are pos-
sible, according to the number of their boundary components:
conical primitives have one boundary, cylinders have two and
bodies have three or more boundary components. Moreover,
the connectivity of the segmentation is very simple, because
the cells can be adjacent only by a whole boundary compo-
nent, therefore preventing the creation of corner vertices. The
decomposition is canonical in the sense that the properties of
the cells and their adjacency are independent of the choice
of f . The Reeb quotient space induces a segmentation of the
manifold into a family of charts which is minimal with respect
to the number of critical points of the mapping function and
whose mathematical counterpart is the classification theorem
for compact surfaces [16,17].

Chosen any arbitrary function f , the first step of our method
is to build the decomposition of the manifold triangle mesh
M and to store it in a shape graph SM , whose nodes are the
primitives and whose arcs code their adjacency. The method
used to build the decomposition is fully described in [13,14]
and it will be briefly summarized in the next section.

The second step concerns the parameterization of each
cell and is the core of our contribution. Conical primitives
are parameterized using the Tutte’s method [2,3], while an
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extension of this method is presented for cylindrical prim-
itives and a novel iterative cutting procedure is introduced
for body primitives. The produced cuts are well shaped and
stable with respect to the quality of the input patch in terms
of tiny triangles and irregular sampling.

Finally, using the parameterized SM , a centerline skeleton
aligned with the parameterization is built, which is very well-
suited for deformation and editing.

The decomposition method as well as the parameterization
of the primitives is fully automatic. The user may, however,
control the process in three different stages: the choice of f ,
the granularity of the decomposition, and the optimization
criteria for the parameterization of each primitive. As sur-
veyed in [14], different mapping functions capture different
features of the shape, and the user could choose the most ap-
propriate one according to the morphological complexity of
the shape or to the application. The use of the Reeb quotient
space ensures the minimal number of charts with respect to
the number of critical points; however, the user could further
segment the primitives of SM to produce a finer segmenta-
tion, and therefore control over the skeleton, where required.
Finally, the user could select any other criteria for optimizing
the parameterization, even a different one for each cell, as the
zippering of the parameterization is highly simplified by the
connectivity of the patches. The generality of the approach,
indeed, enables to adapt the segmentation to the parame-
terization distortion of each patch, and to choose any other
embedding of the charts.

The paper is organized as follows. In Section 2, we briefly
describe the segmentation of surfaces with an arbitrary genus
based on the Reeb quotient space, define its coding as a shape
graph and discuss the properties of the graph. In Section 3,
the parameterization of the graph nodes is presented, and its
application to remeshing are detailed in Section 4. Improve-
ments and future work on global parameterization conclude
the presentation of the proposed framework.

2. Topology-Driven Shape Graph

Differential topology provides a suitable framework for for-
malizing and solving several problems related to shape un-
derstanding and provides a powerful link between critical
points, their configuration and the global properties of the
shape. In particular, the notion of quotient space defined by
Reeb in [15] can be used to define a canonical decomposi-
tion of a manifold into topological cells, given a continuous
real-valued mapping function.

2.1. Reeb Graph and its Extension

Let M be a 2-manifold and f : M �→ R a mapping function.
The Reeb graph RG of M with respect to f is the quotient
space of M × R defined by the relation ‘∼’ with

(p, f (p)) ∼ (q, f (q)) ↔ f (p) = f (q)

and p, q belong to the same connected component of
f −1(f (p)).

Intuitively, the Reeb quotient space collapses into a sin-
gle point each connected component of the level set of f .
While the previous definition does not make any hypothesis
on the differentiability of the mapping function, if f is at least
C2(M), Morse theory guarantees that the topological changes
of the contours occur only at the critical values of f , and the
Reeb quotient space is represented by a graph whose nodes
correspond to critical values and whose arcs code the evolu-
tion of contours. Other applications of the Reeb graphs are
presented in [13,18,19].

As thoroughly discussed in [20], the same relation be-
tween Reeb graph nodes and critical points exists also for
triangle meshes analyzed with C0 mapping functions. Other
approaches to the characterization of discrete surfaces use
local point-wise criteria to detect and classify critical points,
by simulating the concept of critical point using the connec-
tivity of the mesh as underlying topological space [21,22].
Two drawbacks can be identified: first, these methods rely
on the hypothesis that all edge-adjacent vertices have differ-
ent height; second, the number of the detected critical points
is usually very high and pruning or simplification steps are
necessary to make the resulting structures meaningful. An-
other solution is to simply observe that the contour levels
decompose M into a set of regions, whose boundaries con-
tain complete information for detecting critical areas and for
classifying them as maximum, minimum and saddle areas.
For example, if a contour does not contain any other contour
and the value of the function on it is higher than the suc-
cessive one, then the contour identifies a maximum area for
the chosen function f . Following this idea, an extension of
the Reeb definition has been proposed in [20] for continuous
mapping functions defined over manifold triangle meshes,
which yields to a shape segmentation with very good prop-
erties from the point of view of atlas generation.

Let f : M �→ R be a real mapping function defined on
a manifold M, [f min, f max] an interval containing f (M), and
f min =: f 0 < f 1 < · · · < fn < f max =: f n+1 the distribution
of the values of the contour levels Cf (M), which are supposed
to be all nondegenerate contours. A contour is degenerate if
it is exactly at the position of a critical value; in this case,
it is always possible to slightly change that value and get a
nondegenerate contour. In addition, let I = {( fi, f i+1), i =
0, . . . , n} ∪ {fmin = f 0, f 1, . . . , fn, f max = f n+1} be the
partition of the interval [f min, f max] provided by the set of the
n + 1 open interior parts of [ f min, f 1 , . . . , fn, f max] and
the function values of the contour levels.

Definition 1. The Extended Reeb equivalence between two
points p, q ∈ M is given by the following conditions:

(1) f(p) and f(q) belong to the same element of t ∈ I ;
(2) p, q belong to the same connected component of

f −1( f (t)), t ∈ I .
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Figure 1: (a) and (b) The quotient space induced by f , and
(c) its graph-like representation. Connecting points are de-
picted by using red rectangles while normal points are shown
as circles; circles represent the quotient of a region, while
rectangles are images of contour levels.

Therefore, by applying the notion of the quotient relation
in 1, it follows that all points belonging to a region R are
Reeb-equivalent in the extended sense and they may there-
fore collapse into the same point of the quotient space. The
quotient space obtained from such a relation is a discrete
space, which is called Extended Reeb quotient space (ER).
Details on the characterization of the critical areas can be
found in [20].

To represent the ER quotient space as a graph, the classes
which are defined by points on contours are represented by
connecting points, while all other classes are represented
by normal points, simply called points (see Figure 1(b)).
Connecting points are representative of contours and normal
points are representative of regions. A point p representing
a region R is adjacent through a connecting point to another
point q representing another region R′ in the quotient space,
and a normal point is adjacent to as many connecting points
as the number of connected components of the border of the
associated region. From this point of view, the image of a reg-
ular region of M in the ER quotient space is adjacent only to
two connecting points. Therefore, the connectivity changes
of the graph representation are concentrated in the image of
the critical areas, and they are equivalent to the standard Reeb
graph representation which can be easily derived by merging
the intermediate nodes representing regular areas into a single
arc; in Figure 1(b), normal points that correspond to critical
areas are depicted in orange. After this merging step, the
ERG (Extended Reeb Graph) simply consists of nodes rep-
resenting critical areas and the associated connecting arcs. In
Figure 1, an example of the Extended Reeb quotient space
is shown for a torus with respect to the height function f ; in
particular, the sequence of points between p1 and p2 of the
quotient space ER in (b) represents an arc between the nodes
n1 and n2 in (c).

2.2. Shape Segmentation Based on the Extended Reeb
Equivalence

Based on these concepts, it is possible to define the segmenta-
tion of the input surface M into three types of primitives (i.e.

cones, cylinders and bodies) each represented by regions with
specific topological properties. First of all, our aim is to par-
tition the input surface into a family of m patches R1, . . . , Rm

such that:

• ⋃m
i=1 Ri = M ;

• Ri is a connected region, i = 1, . . . , m;

• R◦
i∩ R◦

j = ∅, i �= j , with X◦ internal part of X;

• Ri �= ∅ has 0-genus, and ki boundary components
{γ j}ki

j=1.

Using the notion of Extended Reeb equivalence and the
structure of the corresponding graph, we define these primi-
tives as follows:

• A cone primitive is defined for each terminal node of the
ERG, by merging the regions associated to the terminal
node and all the normal regions associated to the arc
connecting the terminal node to its adjacent one;

• A cylinder primitive is related to each arc connect-
ing to inner nodes of the ERG, by merging all the re-
gions associated to the arc connecting the two inner
nodes;

• A body primitive is defined for each critical region asso-
ciated to an inner node, containing a saddle point of the
ERG.

The most important point is that each primitive {Ri}i has 0-
genus, but a different number of boundary components. More
precisely, a cone primitive has only one boundary component
by definition, it identifies a critical region containing either a
maximum or minimum, and it covers the portion of the shape
until it meets the next critical region.

A cylinder primitive has two boundary components, and
it either corresponds to a degenerate maximum or minimum
(e.g. a volcano rim) or it simply corresponds to the part of
the mesh that connects two critical regions.

Finally a body primitive may have k boundary loops, with
k ≥ 3, and it corresponds to a critical region containing a
saddle point.

The correctness of the chosen primitives, i.e. their topolog-
ical equivalence, is based on the fact that the topological type
of a patch Ri depends only on the number of its boundary
components and on the genus of the surface R�

i obtained by
gluing a disk to each loop γ j , j = 1, . . . , ki. The general case
is detailed by the following theorem [17].

Theorem 1. Let M1 and M2 be two compact bordered sur-
faces; assume that their boundaries have the same number
of components. Then, M1 and M2 are homeomorphic if and
only if the surfaces M�

1 and M�
2, obtained by gluing a disk to

each boundary component, are homeomorphic.
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While the properties of the segmentation are com-
pletely independent of the chosen mapping function f , dif-
ferent f functions generate different decompositions and
this allows to adapt the decomposition to the charac-
teristics of the specific shape. We briefly review three
possible choices for the construction of the ER graph
to give an idea of the kind of decomposition they
produce.

Reeb graph with respect to the distance from the
barycenter. The distance function of the surface vertices
from a given point p of the Euclidean space, fp(x) :=
‖p − x‖2, x ∈ M , represents a class of Morse functions.
The point p could belong to the mesh or not, even though a
reasonable choice is the barycenter of the surface which is
easily calculated and, due to its linear dependence on all the
vertices, stable to small perturbations.

Reeb graph defined by the topological distance from
curvature extrema. In [23,24], a multiresolution curvature
evaluation locates seed points pi of high-curvature regions Ci,
i = 1, . . . , s which are sequentially linked by using the topo-
logical distance on the simplicial complex, in a way similar
to the wave-traversal technique [25].

Reeb graph induced by the geodesic distance. In [18],
for each vertex of a mesh M, the value of the function f is
given by

f (x) :=
∑

i

g(x, bi ) · area(bi ),

where g(x, bi) represents the geodesic distance between
x and bi, {bi}i is the set of the base vertices for the
Dijkstra’s algorithm that are scattered almost equally on
the surface, and area(bi) is the area of the 1-star of
bi.

The use of these primitives enables to segment M in a more
natural way with respect to [4,5], while maintaining their pa-
rameterization and distortion control at a simple level. The
factors which mainly differentiate this decomposition from
simplification-based segmentation are the geometry of the
allowed patches and their connectivity relations. We explic-
itly underline that each boundary component is shared by
only two distinct patches, while in previous methods cor-
ner vertices on the common boundaries have an arbitrary
number of incident regions, thus preventing to perform a
regular remeshing. Because we deal with a simplified sit-
uation on the adjacency between patches, we guarantee a
regular remeshing on the whole surface with the exception
of localized vertices (see Section 4). The proposed surface
segmentation is minimal with respect to the number of crit-
ical and regular regions which depends only on the genus
of M and on the values of f on M. An adaptive segmenta-
tion guided by the parameterization distortion is detailed in
Section 3.3.

Figure 2: (a) Input triangulation, parameterization with (b)
constant, (c) least-square and (d) shape-preserving weights.

3. Parameterization of Triangle Meshes with an
Arbitrary Genus

The parameterization of 2-manifold meshes with one bound-
ary and 0-genus has deserved great attention in research and
the methods proposed reached a mature stage, some of them
being a kind of standard now. One of the best known, called
barycentric mapping, was introduced by Tutte [3] and studied
by several authors [1,2].

In the following, we will describe this method and the pro-
posed extension to handle an arbitrary number of boundary
components. While the barycentric mapping has been used
in our approach, all the other parameterization alternatives
would work fine as well. We briefly overview some of them
for the sake of completeness.

Parameterization based on barycentric-coordinates.
The method proposed in [2,3] defines a global parameteriza-
tion for a 2-manifold mesh M with one boundary and 0-genus.
The homeomorphism ϕ between M and its convex parameter
domain � ⊆ R

2 is the solution of the linear system

(I − W )u = bx , (I − W )v = by, (1)

where the entries of W are defined as{
wi j > 0, if e = (i, j) is an edge of M ,
wi j = 0, else,

the vector b is a linear combination of the coordinates of the
vertices in ∂�, and

∑
j wi j = 1, ∀i .

By allowing each internal vertex of � to be any convex
combination of its neighbors, the procedure provides all pos-
sible valid planar embeddings of the graph T associated to
M. The choice of the weights wij (i.e. constant, least-squares
or shape-preserving) affects the distortion of the parameter-
ization (see Figure 2); therefore, they have to be chosen in
order to minimize the triangle deformation with respect to the
geometry of the 3D mesh. In this way, all those tasks such as
texture mapping, remeshing and approximation with contin-
uous surfaces are performed on the planar domain instead of
M.

In [26], the drawback of mapping the boundary of the 3D
mesh onto a convex planar curve has been solved by us-
ing a multilayered virtual boundary. Finally, the method of
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barycentric-coordinates has been extended in [11] to the case
of closed manifold triangle meshes with 0-genus, defining all
its possible spherical parameterizations.

Parameterization based on energy minimization. Sup-
pose the boundary vertices have been chosen and are fixed,
then the previous framework is equivalent to a minimization
problem [2] where the weights (wij)ij define the functional

F(p1, . . . , pN ) :=
∑

(i, j)edge
wi j‖pi − p j‖2

2,

and whose minimum is the parameterization (�, ϕ). Confor-
mal [8,27], and harmonic weights [28] represent alternative
choices. In the first case, the aim is to improve the orthogonal-
ity and homogeneous spacing of the parameterization, while
in the second one the distortion is controlled by minimizing a
deformation energy. However, the standard discretization of
harmonic functions does not always guarantee a one-to-one
mapping.

In [29], Minkowsky functionals of 2-manifolds (i.e. area,
Euler characteristic, and perimetry) are used for defining an
intrinsic parameterization which is invariant to rotation and
translation, and minimizes the distortion defined as the linear
combination of the Dirichlet [28] and χ -energy. An angle-
based flattening method which minimizes the relative distor-
tion of the planar angles with respect to their 3D counterparts
has been proposed in [30]. Finally, in [31] the parameteriza-
tion is achieved by minimizing the Dirichlet energy of the
triangulation without fixing in advance its boundary which
evolves according to the optimization process.

3.1. Parameterization of Primitives

In this section, the method of barycentric-coordinates is ex-
tended to the case of a surface triangulation M with 0-genus
and k simply-connected boundary components {γ i}k

i=1.

First of all, conical primitives, i.e. for k = 1, fall into the
standard case and they are parameterized by solving the Equa-
tion (1) with shape-preserving weights.

We now analyze the case k ≥ 2 (see Figure 3). Chosen
one boundary component γ 1 (for example the one with the
greater number of vertices or length), we parameterize M with
respect to γ 1, that is, we consider the vertices of the remaining
boundary components as unknowns in the linear system (1).
In this way, we achieve a parameterization φ: M �→ �′ where
�′ is a planar domain with k convex loops {β i := φ(γ i )}k

i=1.
Clearly, we have a different φ for each chosen loop γ i. In the
case of the shape-preserving parameterization, we associate
least-square weights to those vertices which belong to the
boundary components {γ i}k

i=2 because they do not have a
closed 1-star.

Another choice, which resembles the statement of Theo-
rem 1, consists of closing (k − 1) boundary components of

Figure 3: General framework for the parameterization of a
surface patch with k = 4 boundary components.

M, thus defining a new surface triangulation M� with just one
boundary, mapping M� to �′, and then removing the closed
loops; we discard this method because the internal loops of
the planar parameterization are generally nonconvex.

Moreover, even if �′ is homeomorphic to the input mesh,
this approach is not useful for texture mapping, especially
when the texture is nonuniform. In this case indeed, the en-
tire image should be mapped onto the surface and not a part
of it only. For remeshing applications or uniform textures, the
presence of holes is simply solved by avoiding operations on
them. For the removal of the internal closed curves {β i}k

i=2

(as detailed in Sections 3.1.1 and 3.1.2), we define a new pla-
nar domain � with only one boundary and a homeomorphism
ψ : �′ �→ � ⊆ R

2 with the following properties:

• The boundary ∂� of � is convex;

• Each internal boundary component β i of �′ is mapped
to a curve ψ(β i ) of ∂�, i = 2, . . . , k.

We now detail the steps of the algorithm distinguishing the
case k = 2 (i.e. parameterization of cylindrical primitives),
and k ≥ 3 (i.e. parameterization of bodies).

3.1.1. Parameterization of Cylindrical Primitives

If k = 2, the surface triangulation is topologically equivalent
to a cylinder and the parameterization φ: M �→ �′ embeds
M onto a domain �′ with two boundary components β 1 :=
φ(γ 1) and β 2 := φ(γ 2). Let p and q be the closest points,
with respect to the Euclidean distance, on β 1 and β 2; that is,

‖p − q‖2 ≡ min
r∈β1,s∈β2

{‖r − s‖2},

and [p, q] the line segment from p to q (see Figure 4(a) and
(b)).
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Figure 4: (a) Input cylindrical surface R; (b) least-square parameterization of R with respect to the boundary depicted in yellow
in (a), and minimal cut γ (green line); (c) shape-preserving unfolding of �′ with respect to the depicted cut in (b); (d) 3D cut
�; shape-preserving parameterization of R with respect to � on the (e) unit square and (f) on the unit circle; (g) coordinate
lines on the square and (h) their counterparts on the cylinder. The example shows the stability of the cut identification and
parameterization of R in spite of its high-curvature, irregular geometry and connectivity.

Figure 5: (a) Cut of the triangle trough a vertex and (b)
re-triangulation.

The cut [p, q] is inserted in the input triangulation before
unfolding the parameter domain onto �. To this end, if [p, q]
intersects a triangle t passing through one of its vertices t is
split into two new faces t1 and t2 which share a part of the cut
(see Figure 5(a)). Otherwise, [p, q] splits t into one triangle
and a quadrilateral q; then, q is re-triangulated by subdividing
it along its shortest diagonal (see Figure 5(b)). This update
is also performed on the 3D triangulation in order to ensure
that M and �′ share the same topology.

Successively, we cut �′ along [p, q], thus unfolding �′ to �

through ψ . The unfolding map ψ is achieved by duplicating

the cut [p, q] to [q, p], converting β 1, β 2 and the cuts into
one connected loop {β 1, [p, q], β−1

2 , [q, p]}, and applying
the Floater’s parameterization (see Figure 4(c)). Each closed
curve γ has an anticlockwise orientation; γ −1 means that
we have reversed the ordering of its vertices (i.e. clockwise
orientation). Finally, the cut operation is coded into a relation
S between ψ([p, q]) and ψ([q, p]). Therefore, the map ϕ :=
ψ◦ φ embeds M onto �.

The linear path [p, q] exploited for mapping �′ to � de-
fines a curve � := φ−1([p, q]) on M; the more φ maintains
the geometry of the input mesh the better the line connecting
φ−1(p) to φ−1(q) approximates the corresponding geodesic
(see Figure 4(d)). Alternatively to the previous approach, we
can parameterize the cylindrical primitive directly using the
3D cut � without applying two consecutive unfoldings with
the aim of avoiding to accumulate the distortion in the prox-
imity of the boundary of � (see Figure 4(e–f)). We use this
new embedding ϕ: M �→ � in all the following examples.

3.1.2. Parameterization of Bodies

We solve the case of k boundaries, with k ≥ 3, by using an
iterative procedure. Supposed that we have removed (i − 1)
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Figure 6: (a) Body primitive extracted by using as f the
geodesic distance from curvature extrema and (b) parame-
terized with respect to the cut shown in (a).

Figure 7: (a) Cut on a surface of 0-genus with three
boundary components, (b) unfolding onto the unit circle
(shape-preserving weights), (c) regular sampling, (d) regular
remeshing, (e) normal-map image (1024×1024) and [9], (f)
texture mapping.

boundary components, at the ith step we cut the current pa-
rameter domain �′

i along the line segment of minimal length
which joins its external loop with the closest internal bound-
ary component. If �′

1 := �′, let ψ i : �′
i �→ �′

i+1 be the ith
embedding; at the end of this process, the internal loops of
�′ are mapped onto ∂�′

k through the function ψ := ψ k−1◦
· · · ψ 2◦ ψ 1 (see Figures 3, 6 and 7).

Figure 8: (a) Set of concentric circles on the parametric
domain, and (b) their corresponding curves on M; (c) and
(d) sections with respect to the critical point (f is the height
function).

3.2. Shape Graph and Coding of the Parameterization

Throughout the previous sections we have identified and pa-
rameterized cylinders, cones and bodies achieving a segmen-
tation of the input object and a parameterization of each
building patch. The shape decomposition can be coded in
an attributed graph SM whose nodes are the extracted prim-
itives, while the arcs code the adjacency relations among
them.

Due to the properties of the topological decomposition, and
parameterized each arc between two adjacent nodes either
connects a cylinder to a body, or a cone to a body.

Based on the parameterization of each patch, the graph
SM can be augmented with additional geometric and struc-
tural information, namely the centerline skeleton of the shape
computed patch by patch. The global skeleton is connected
because the skeletal line of each primitive shares the barycen-
ter of the common boundary components with the adjacent
patch.

More in details, for extracting the skeleton � of a conical
primitive (see Figure 8(a) and (b)), in the mapping step we
consider as � the unit circle with a set of circunferences {S(0,
ri)}i centered in the origin and with radii 0 ≤ ri ≤ r i+1 ≤
1; then, � is built by joining the barycenters of the curves
ϕ−1(S(0, ri)) on M. We can optimize the previous step by
choosing ϕ(p) as center of the circles, where p is a critical
point of (M, f ) (see Figure 7(c) and (d)).

For extracting the skeleton � of a cylindrical primitive, we
choose as � the unit square [0, 1] × [0, 1] where the cuts
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[p, q] and [q, p] are mapped onto the line segments l2, l4,
while the two boundary components β 1 and β 2 are identi-
fied with l1 and l3 respectively (see Figure 4(g)). First of all,
we associate to the primitive a coordinate network of lines;
each loop is achieved as ϕ−1({s = constant}) and each par-
allel as ϕ−1({t = constant}). Then, each loop is collapsed
to its barycenter thus defining a skeletal line whose number
of nodes can be refined by increasing the number of loops
in spite of the mesh density and connectivity [23] (see Fig-
ure 4(h)). The coordinate network is useful for visualizing the
presence and location of distortions induced by the parame-
terization and due to the selection of a specific set of weights
in (1) or to a particular cut (e.g. along feature lines [32]) for
the unfolding. Finally, � and a section ϕ−1({s = constant})
represent the topological generators of the cylindrical
patch.

We explicitly underline that chosen a conical (respectively
cylindrical) primitive R embedded by ϕ: M �→ �, its skele-
tal line � is aligned with the parameterization in the sense
that � is the Reeb graph of R with respect to f (x) :=
‖ϕ(x)‖2, ∀ x ∈ M (resp. f (x) := pr 2(ϕ(x)), ∀ x ∈ M , with
pr2(t, s) = s, ∀(t, s) ∈ R

2). This property enriches existing
methods based on the Reeb graph [33] with the information
and applications of parameterization; we thus provide a tool
which uses topology for the patch decomposition and ge-
ometry for the parameterization. Finally, for body primitives
we simply consider as skeleton the lines connecting the cen-
ter of mass of the body to the barycenters of its boundary
components.

SM , augmented with the centerline skeleton, gives a high-
level geometric and topological knowledge on where and
how regions are located and glue together; also, SM speci-
fies how we can generate the input surface with the build-
ing primitives (or equivalently, with their planar embed-
dings) extracted by using the Reeb graph. Moreover, the SM

stores information on the size and generators of cylinders and
cones.

Starting from the partition {Ri}i=1,...,m of M parameterized
by ϕ i : Ri �→ �i , i = 1, . . . , m, the graph-based parameter-
ization of M is the collection P := {(Ri , ϕi , �i )}i=1,...,m en-
riched with the adjacency relations among primitives coded
by the shape-graph. Equivalently, we substitute each node
of the shape-graph with the parameterization of the corre-
sponding primitive calculated by using standard (e.g. cones)
or specialized methods (e.g. cylinders and bodies). See
Figure 9 for a complete view of the parameterization graph
and Figure 10 for more complex surfaces. An example of
local deformations is shown in Figure 11.

3.3. Adaptive Approach to Shape Decomposition and
Parameterization

We deal with complex 3D shapes in a more flexible way
through an adaptive implementation of the previous method

Figure 9: Shape-graph and parameterization of the building
primitives related to the minimal segmentation induced by the
Reeb graph with respect to the height function.

which slices the surface in correspondence of topological
changes and where high parameterization distortions or cur-
vature extrema [24,34] occur. To this end, after the identifi-
cation of the regions {Ri}i=1,...,m we proceed as follows. For
each patch Ri,

(1) We locate its subregions S with high L2, or L∞ [42]
stretch (resp. multi-resolutive curvature [24]);

(2) We use the averaged value α of f on its boundary com-
ponents to define the corresponding iso-contour f −1(α)
on Ri;

(3) We subdivide Ri in correspondence of the new contours
(if any).

The type of each new subpatch can be different with re-
spect to that of Ri, but it always falls in the previous clas-
sification of the building primitives. In this way, the refined
segmentation of M enables to reduce the distortion of the
parameterization; alternative criteria can be introduced with
the unique constraint of defining 0-genus patches. In Figures
10(a) and 10(b) and 11 the minimal and adaptive segmenta-
tion are shown. Table 1 gives the number and type of primi-
tives of the segmented surfaces related to the examples shown
in the paper.

4. Remeshing

The advantages of using the proposed method for remesh-
ing are discussed in this section. To this end, we review the
remeshing techniques commonly used to approximate a given
surface M with a new triangulation M which has a specific
connectivity (i.e. regular, semi-regular) and geometry (i.e.
anisotropic, isotropic vertex sampling).
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Figure 10: (a) Minimal and (b) adaptive segmentation of the feline (f is the geodesic distance from curvature extrema), (c)
local segmentation of a complex shape of genus seven (f is the distance from the barycenter).

Figure 11: (a) Minimal decomposition with respect to the
height function and (b) adaptive segmentation induced by
the parameterization distortion.

Table 1: Number of patches of the segmentation.

Surf. Fig. No. of No. of No. of No. of
Patch Cones Cyl. Bodies

Teapot 9 9 3 3 3
Bitorus 12 15 4 6 5
Feline 10(a) 12 6 2 4
Feline 10(b) 17 7 4 6
Vase 10(c) 25 14 7 4

Given a disk-like surface M parameterized by ϕ: M �→ �,
a regular remeshing [35,36] defines a base mesh S0 with a
minimal number of triangles which are subdivided to obtain
a sequence S0, S1, . . . , Sr of triangulations with subdivision
connectivity and contained in �. The iteration proceeds un-
til Sr (respectively ϕ−1(Sr)) is a good approximation of �

(respectively M) with respect to some geometric error (e.g.
L2 norm). Therefore, this method uses the same number of
samples on the parametric domain in spite of the presence
in � of triangles with a different area. As a result, we have
an oversampling of those triangles with a greater area and
an undersampling in regions where small local features are
located. To overcome this drawback, two strategies are avail-
able. The first one consists of re-parameterizing � to a new

domain � with the aim of equalizing the area of each triangle;
internal vertices are updated using an area-based smoothing
[36] or a relocation strategy [37]. This optimization step can
produce inverted triangles and in the case of small features it
does not avoid the necessity of a large number of subdivision
steps.

To overcome the exponential growth of the number of ver-
tices, the second choice is an adaptive remeshing (Sk)k of
� which localizes on the current remesh Sk those triangles
where the approximation error between M and ϕ−1(Sk) ex-
ceeds a given error ε and which have to be split [5]. A triangle
t ∈ Sk ⊆ � is subdivided if the following condition

E(t) := max
pi ∈t,pi ∈�

{
dist(ϕ−1(pi ), π )

}
> ε

hold, where π is the plane defined by the triangle ϕ−1(t).
After this phase, the mesh Sk+1 is achieved from Sk by using
the red-green triangulation. The iteration terminates when
the local error E(t) does not exceed ε for all t ∈ Sr; finally,
ϕ−1(Sr) is evaluated combining the point plane location and
barycentric coordinates.

Local remeshing [5,35,38] is based on partitioning 3D
meshes into disk-like patches, each one parameterized and
then remeshed. Main problems of this approach are the lack
of symmetry in the patch decomposition and the dependence
of its structure from the simplified mesh MS which defines
the atlas identification. The regular connectivity of each patch
cannot be extended to the entire mesh and extraordinary ver-
tices are ‘randomly’ located on the remeshed surface M .

Global remeshing [9,36,39] re-samples the global param-
eterization of M with a regular or an adaptive grid and thus
treats the original mesh as a whole while guaranteeing the
regularity of the connectivity. The problems which affect the
definition of a ‘good’ global parameterization, i.e. the choice
of the cuts for the unfolding of surfaces with an arbitrary
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genus and the parameterization distortion of regions with a
high-curvature, are reflected on the final result.

An alternative to both approaches is to work directly on
the surface with an iterative procedure which modifies local
regions on M [37,40], usually the 1-star of each internal ver-
tex, and controls their smoothness and sampling rate. This
mesh adaptation process reduces the computational cost and
avoids the drawbacks of decomposing and cutting M; how-
ever, the locality of the approach does not guarantee to avoid
error accumulation through feature lines and to effectively
optimize the sampling of the original surface.

4.1. Feature-Based Local Remeshing

We apply the graph-based parameterization for the remeshing
of a 3D shape with an arbitrary genus and density. As refine-
ment operator for uniform remeshing we consider the 1-to-4
operator that recursively subdivides each triangular face into
four subtriangles by introducing three new vertices on the
edges. In this way, each remeshed patch has an implicitly
defined connectivity which is exploited in several tasks such
as compression, progressive transmission and multiresolu-
tion editing. The adaptive remeshing is based on the method
presented in [5].

We first discuss how each primitive is remeshed by tak-
ing into account their different parameterizations and then
combined to give a coherent and global remesh of the input
surface.

Remesh of conical primitives. Because Sr ⊆�, we ensure
the remeshing of ∂� by projecting ∂Sr onto ∂�; to this end,
we map each vertex p ∈ ∂Sr to the point of intersection
between the segment {λp: λ > 0} and ∂�. Once computed
Sr, the remeshed data set M is achieved as ϕ−1(Sr); each
vertex p ∈ Sr is written using its barycentric-coordinates
with respect to the vertices of a triangle t := (i , j , k) ∈ T
which contains it, i.e.

p = αvi + βv j + γ vk, α + β + γ = 1,

whose 3D counterpart is ϕ−1(p) = αϕ−1(vi) + βϕ−1(vj) +
γ ϕ−1(vk). The remeshing is reduced to a point-location prob-
lem in an irregular triangulation whose computational cost is
O(

√
N ) (see Figure 12(a–d)).

Remesh of cylindrical primitives. For a cylindrical prim-
itive M, we can proceed in two different ways. As first choice,
we apply the previous approach with its parameterization ϕ:
M �→ � onto the unit square; the edges l2 and l4 have to be
coherently re-sampled (i.e. (1, α) ∈ l 2 if and only if (0, α) ∈
l 4, 0 ≤ α ≤ 1), in order to ensure that ϕ−1(l 2) and ϕ−1(l 4)
coherently join when mapped back to � ⊆ M . In the case of
uniform remeshing, the vertices of ∂� have 3-connectivity
and each vertex on ϕ−1(l 2) has 6-connectivity. Therefore,
the remeshed patch has 6(respectively 3)-connectivity for in-
ternal (respectively boundary) vertices and the number of

Figure 12: (a) Input conical primitive, (b) shape-preserving
parameterization, (c) regular and (d) adaptive remesh of (a).
The examples (e) and (f) show the uniform and adaptive
remesh of the cylinder in Figure 4.

vertices on the two remeshed boundary components is the
same (see Figure 12(e)). An example of adaptive remeshing
is given in Figure 12(f).

The second possibility is to use the embedding φ: M �→
�′ onto the unit circle with the boundary component β 2 in
its interior. In this case, we take care of introducing in �′

the intersection between β 2 and Sr, as done in Section 3.1.1.
This procedure is preferred to the previous one when the
parameterization of the cylindrical patch onto the unit square
is strongly distorted by an irregular sampling of its geometry.
We explicitly note that we cannot know in advance how many
vertices of β 2 belong to Sr. The same considerations apply
to bodies (see Figure 7).

We now consider what happens on the boundary compo-
nents of adjacent patches in P . If the same boundary com-
ponent γ is used to parameterize two adjacent regions Ri,
Rj (therefore γ ⊆ Ri ∩ Rj), we consider the same orienta-
tion and starting point on it in order to ensure that it has the
same parameterization for both regions. This choice guaran-
tees that ∂�i ≡ ∂� j and that the corresponding remeshed
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Figure 13: (a) Adjacent patches (Ri is a conical primitive,
and Rj is a body with four boundary components), (b) topo-
logical segmentation, remeshed data set (c) before and (d)
after the update of the common boundary; (e) final result.

regions (with respect to the same Sr) coherently join on the
common (remeshed) boundary whose vertices have valence
six.

Let us now consider the common boundary component β

of two adjacent patches Ri and Rj, and suppose that one of
them has been parameterized with respect to a loop γ �= β

(see Figure 13(a)). In this case, their remeshed boundaries
�i , � j in R

3 corresponding to β do not coherently join even
though they are two different descriptions of ϕ−1(β). Sup-
posed that �i has a greater number of vertices with respect
to �j, we substitute �j with �i (see Figure 13(b) and (c))
and we insert it into the remeshed patch corresponding to Rj

(see Figure 13(d) and (e)). This choice is intended to mini-
mize the number of extraordinary vertices, and we use this
strategy if we consider a different r in Sr for each patch or the
adaptive remeshing (see Figure 14). An alternative zippering
of adjacent patches is discussed in [41].

In Table 2, we compare the L2 and L∞-stretch before and
after the cutting of several 0-genus surfaces M; the values
show that the embedding of M onto a parameter domain � has
a distortion much smaller than the mapping onto �′ obtained
without removing the internal loops.

5. Conclusions and Future Work

The proposed framework defines a user-independent model
for graph-based parameterization of 3D shapes into a minimal
number of maximal charts, and it is associated to a centerline

Figure 14: (a) Shape segmentation with f Euclidean dis-
tance from the barycenter. (b) Uniform local remeshing of a
bitorus; yellow curves locate boundary components between
adjacent regions.

Table 2: Comparison of the parameterization stretch before and
after the cut for patches of different shape and number of boundary
components.

Patch Figure L2(�′) L∞(�′) L2(M) L∞(M)

body 3 32.91 147.74 29.86 12.34
cyl. 4 7.53 137.74 6.12 48.42
teapot 6 29.83 1039 16.08 619.50
bone 7 540.71 6764.45 26.01 906.67

skeleton (aligned with the parameterization), which stores
geometric information as node labels.

The proposed patch identification locates regions, which
are global features of the input shape; in fact, cones and cylin-
ders represent protrusions, while bodies are junctions among
them. This choice reduces the number of patches with respect
to the atlas generation, and thus improves the regularity and
smoothing of the remeshing through the boundaries of adja-
cent regions, which usually require a specific identification
and treatment. The adaptive surface segmentation enables to
reduce the distortion in the parameterization of each region
Ri with benefits on the remeshing. Finally, the localization
of extraordinary vertices is an improvement with respect to
previous methods which do not control their location on the
surface. Being N the number of vertices of M, the compu-
tational cost of the topological segmentation is O(N log N),
and O(N) that of the parameterization.

Our current improvement is the optimization of the
remeshing in order to minimize the number of localized ex-
traordinary vertices. The strategy under development exploits
the red/green triangulation and consists of ordering the patch
parameterization starting from their adjacency relations and
common boundaries.
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Figure 15: Global parameterization with respect to two different unfoldings; the topological information provided by the Reeb
graph with respect to the height function f is used to identify a handle on the input object. In the first (respectively second) row
the handle is the body (a and b) (respectively handle (e)) of the teapot and it is cut by using an iso-contour γ of f . Duplicating
γ , we have a surface M of 0-genus with two boundary components, that is a cylinder; the new cut and the unfolding of M are
calculated as described in Section 3.1.1. The unfolding on the unit circle is shown in (c), (f) and (g) gives a zoom-in of (f). Each
row shows the normalized L2 stretch distribution s [42]. Firt row (d): L2(M) = 37.36 where vertices are red if 0 ≤ s ≤ 0.001,
yellow if 0.001 < s ≤ 0.005, green if 0.005 < s ≤ 0.2109 and blue if 0.2109 < s ≤ 1. Second row (h): L2(M) = 388.85, red if 0 ≤
s ≤ 0.001, yellow if 0.001 < s ≤ 0.0085, green if 0.0085 < s ≤ 0.2691 and blue if 0.2691 < s ≤ 1. The cut achieved as pre-image
of the line segment [p, q] is not affected by the high curvature of the handle and by the distortion of the parameterization used
for its evaluation.

The topological information provided by the Reeb graph,
and the method used for parameterizing bodies defines a
simple method for the global embedding of M into the plane
(see Figure 15).

Because the model is based on a high-level representation
of 3D shapes, the next goal is to perform shape transforma-
tions which affect the object geometry and supervised by a
check of the topological meaningfulness of the editing oper-
ations (see Figure 16).

Acknowledgments

This work has been supported by the EC-IST FP6 Network
of Excellence ‘AIM@SHAPE’. Special thanks are given to
Silvia Biasotti for providing the segmentation based on the
Extended Reeb Graph and to the Shape Modelling Group at
IMATI-GE/CNR.

References

1. M. S. Floater and K. Hormann. Surface parameteriza-
tion: A tutorial and survey. In Multiresolution in Geo-
metric Modelling, N. A. Dodgson, M. S. Floater and M.
A. Sabin. (Eds.), Springer, 2004.

2. M. S. Floater. Parametrization and smooth approxima-
tion of surface triangulations. Computer Aided Geomet-
rical Design, 14(3):231–250, 1997.

3. W. T. Tutte. How to draw a graph. Proceedings of the
London Mathematical Society, 13, 743–768, 1968.

4. M. S. Floater, K. Hormann and M. Reimers. Parame-
terization of manifold triangulations. In Approximation
Theory X: Abstract and Classical Analysis. Vanderbilt
University Press, pp. 197–209, 2002.

5. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar and
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