Mathematical Tools for 3D Shape Analysis and Description

SGP 2013 Graduate School

tools and concepts, part II
Andrea Cerri and Silvia Biasotti

- mathematical concepts
 - basics on algebraic topology
 - simplicial complexes
 - homology
 - Morse theory
- concepts in action
 - comparing shapes
 - persistent topology
 - Reeb graphs (by Silvia)

01/07/2013 3D Shape Analysis and Description

isometries, but not only...

- topological spaces and functions to model shapes and their properties as pairs \((X, f)\);
- suitable for dealing with stability/robustness;
- are there alternatives to isometries to solve other sets of problems?

01/07/2013 3D Shape Analysis and Description

algebraic topology & homology

- Associates algebraic invariants with topological spaces;
- Classifies topological spaces up to homeomorphisms;
- Homology is an option.

01/07/2013 3D Shape Analysis and Description

01/07/2013 3D Shape Analysis and Description

01/07/2013 3D Shape Analysis and Description

01/07/2013 3D Shape Analysis and Description
mathematical concepts
- basics on algebraic topology
- simplicial complexes
- homology
- Morse theory

concepts in action
- comparing shapes
- persistent topology
- Reeb graphs (by Silvia)

approach: to decompose a topological space into simple pieces easier to study;

q-simplices are the building blocks:
- combinatorial aspect: relations among simplices;
- geometric aspect: related to their embedding in the Euclidean space.

a simplicial complex is the combinatorial structure, generated by q-simplices;

simplices and faces

a q-simplex in \(\mathbb{R}^n \), with \(n \geq q \), is the convex hull of \(q + 1 \) affinely independent points.

a face of a q-simplex is the convex hull of a subset of the set of its points.

dimension of a simplicial complex

the dimension of \(K \) is the highest among the dimensions of its simplices:
- triangle meshes are 2-complexes;
- tetrahedral meshes are 3-complexes.
a *q*-chain is a sum of all *q*-simplices in *K*,
\[\sigma = \sum_i \lambda_i \sigma_i, \lambda_i \in \mathbb{Z}_2 = \{0,1\} \]
- a curve on a mesh is a 1-chain
- a surface patch is a 2-chain

the *q*-chain space \(C_q(K) \) is the vector space generated by all the *q*-simplices in *K*;

boundary operator (more formally)

\[\partial_q : C_q(K) \to C_{q-1}(K) \]
proves the boundary of a boundary is null

cycles and boundaries

- is a *q*-cycle if its boundary is 0;
- is a *q*-boundary if is a boundary of a \((q+1)\)-chain;

Intuition:

Homology formalizes this idea
an element of $H_q(K)$ is an equivalence class containing homologous q-cycles;

the rank of $H_q(K)$ is the q-th Betti number of K;

For 3D data:
- $\beta_0 = \#$ components;
- $\beta_1 = \#$ tunnels;
- $\beta_2 = \#$ voids;

the homology $H_*(K)$ is a topological invariant.

Let S be a connected, orientable surface without boundary. The genus g of S is
- the maximum number of cuttings along non-intersecting closed simple curves which can be cut along the surface without disconnecting it...
- ... or half of the first Betti number $\beta_1(S)$.

The genus is a topological invariant.

mathematical concepts
- basics on algebraic topology
- simplicial complexes
- homology
- Morse theory

concepts in action
- comparing shapes
- persistent topology
- Reeb graphs (by Silvia)

functions and critical points (I)

$f: M \to \mathbb{R}$ smooth function on a smooth manifold M of dimension n:
- $p \in M$ is critical if df_p is the zero map, i.e. $\frac{df}{dx_1}(p) = \cdots = \frac{df}{dx_n}(p) = 0$;

A critical point $p \in M$ is non-degenerate if the Hessian $H_f(p)$ is non-singular, i.e.
$$\det \left(H_f(p) \right) = \det \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(p) \right] \neq 0$$

If p is a non-degenerate critical point of f, the index λ_p of p is defined as:
$$\lambda_p = \#(\text{negative eigenvalues of } H_f(p))$$

$f: M \to \mathbb{R}$ is a Morse function if all of its critical points are non-degenerate;
Morse functions & critical points: Two results

- For \(c \in \mathbb{R} \), set \(M_c = \{ p \in M : f(p) \leq c \} = f^{-1}((-\infty, c]) \).
- How/when does the topology of \(M_c \) changes?
- To combine the topology of \(M \) with the quantitative measurement provided by \(f \):
 - \(f \) is the lens to look at the properties of \((M, f)\).
 - Different choices of \(f \) provide different invariants.
- To construct a general framework for shape characterization which is parameterized wrt the pair \((X, f)\).

Morse theory can be used for:

- Comparing objects' shapes can be done with respect to some "relevant properties";
- To model a shape we consider pairs \((X, f)\) s.t.
 - \(X \) represents the object;
 - \(f : X \rightarrow \mathbb{R} \) is a function and describing the relevant properties of the object.

content

- Mathematical concepts
 - Basics on algebraic topology
 - Simplicial complexes
 - Homology
 - Morse theory

- Concepts in action
 - Comparing shapes
 - Persistent topology
 - Reeb graphs (by Silvia)

references

- W. Massey, Algebraic topology: An Introduction, Brace&World Inc., 1967
- J. Milnor, Morse theory, Princeton University Press, New Jersey, 1963
- C. Kosniowski, A First Course in Algebraic Topology, Cambridge University Press, 1966
How can we compare two pairs \((X, f), (Y, g)\)?

Idea: Use a metric able to quantify and measure the deformation of \(X\) into \(Y\), in terms of \(f\) and \(g\).

\[
d((X, f), (Y, g)) = ?
\]

formally: **Natural pseudo-distance** \(d\)

\[
d((X, f), (Y, g)) = \inf_{\text{homomorphisms } h} \max_{x \in X} \|f(x) - g(h(x))\|_{\infty},
\]

\(h\) varying among all homomorphisms from \(X\) to \(Y\).

Problem: the natural pseudo-distance \(d\) is difficult to compute; we need tools to get information about it;

Persistent topology allows us get lower bounds for \(d\) by means of suitable shape descriptors;

Instead of comparing pairs \((\text{space}, \text{functions})\), we can compare the associated descriptors.

- Mathematical concepts
 - basics on algebraic topology
 - simplicial complexes
 - homology
 - Morse theory

- Concepts in action
 - comparing shapes
 - persistent topology
 - Reeb graphs (by Silvia)

A filtration is a nested sequence \(X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n = X\), e.g. the sub-level sets of a function \(f: X \to \mathbb{R}\).

Topological exploration along a filtration of \(X\), looking for important topological events.

Measure the lifespan of homology classes along the filtration:

\[
f_x
\]

Encode the birth level \(i\) and the death level \(j\) of a homology class by a point \((i, j)\).
Changing functions produces different information.

Stability with respect to the bottleneck distance*: $d_B(\text{Dgm}(f), \text{Dgm}(g)) \leq \inf_{\alpha \in \mathcal{X}} \max_{x \in \mathcal{X}} \|f(x) - g(h(x))\|_\infty$

This implies resistance to noise; it is a lower bound for the natural pseudo-distance.

* Cohen-Steiner et al. (2005), Chazal et al. (2009), d’Amico et al. (2010)...

Retrieval of trademark images [C., Ferri, Giorgi 2006]

Approach:
- for each image, battery of 25 descriptors;
- each distance between descriptors of the same type induces a metric on the database;
- combine all 25 metrics (max, sum…) to obtain a final similarity score.
Other possible applications...

- Point cloud data analysis [Chazal et al. '09]
- 3D segmentation [Skraba et al. '10]

01/07/2013 3D Shape Analysis and Description 43

Other possible applications...

- data simplification [Bauer, Lange, Wardetzky '12]
- 3D (textured) shape analysis and comparison [Biasotti et al. '13]

01/07/2013 3D Shape Analysis and Description 44

Reeb graph

- Reeb graphs store the evolution of the level sets of the mapping function f

01/07/2013 3D Shape Analysis and Description 46

Reeb graph definition

- let M be a compact n-manifold, $f: M \rightarrow \mathbb{R}$ a simple Morse function, and given "~" the equivalence relation
 $(P, f(P)) \sim (Q, f(Q)) \iff f(P) = f(Q)$ and P and Q are in the same connected component of $f^{-1}(f(P))$
- the quotient space on $M \times \mathbb{R}$ is a finite, connected simplicial complex K of dimension 1, such that
 - the counter-image of each vertex of K is a singular connected component of the level sets of f
 - the counter-image of the interior of each simplex of dim 1 is homemorphic to the topological product of one connected component of the level sets by \mathbb{R}

01/07/2013 3D Shape Analysis and Description 47

multidimensional setting ($f: X \rightarrow \mathbb{R}^k$):
- multidimensional persistent homology group [Carlsson, Zomorodian '07];
- Multidimensional size functions [Biasotti et al. '08];
- Persistence spaces [C., Landi '13];
- ...

an historical perspective

- Size functions [Frosini '91];
- Persistent homology groups [Edelsbrunner, Letscher, Zomorodian '02];
- Vines and vineyards [Cohen-Steiner, Edelsbrunner, Morozov '06];
- Interval persistence [Dey, Wegner '07];
- Zig-Zag persistence [Carlsson, de Silva, Morozov '09];
- Persistent cohomology [de Silva, Morozov, Vejdemo-Johansson];
- ...

01/07/2013 3D Shape Analysis and Description 41

overview of RGs when the function f varies

- f values
- height
- barycenter
- bounding sphere
- center
- integral
godesic
- curvature
- extrema
draw the Reeb graph with respect to the height function \(f \) of the following shapes

- RG properties
 - it provides a 1D structure of the shape
 - it describes the shape of an object under the lens of the function \(f \)
 - nodes and arcs depend on the number of critical points of \(f \)
 - it may be computed in \(O(n \log n) \) operations

- Reeb graph based representations
 - Reeb graph variations
 - contour trees (simply-connected domains)
 - component trees (gray-level images)
 - centerline skeletons (geodesic distance from a point)
 - for shape matching
 - Multiresolution Reeb graph (MRG), Hilaga et al. 2001
 - augmented Multiresolution Reeb graph (aMRG), Tung & Schmitt 2005
 - Extended Reeb graph (ERG), Biasotti et al. 2000

- extension to volume data
 - nodes of the ERG correspond to regions (either surfacic or volumic)
 - arcs code the adjacency among the parts
 - each arc can be oriented using the growing direction of the mapping function: the RG is a direct acyclic graph
 - with each ERG node, store spatial attributes measuring properties of the part associated to it
 - node embedding (Cartesian coordinates, x, y, z)
 - average value of \(f \) in the part
 - volume
 - area
 - some radii: min, max, average

- geometric embedding
geometric embedding

- each arc can be oriented using the increasing direction of \(f \): the RG is a direct acyclic graph
- nodes and arcs correspond to surface parts
- node and arc attributes are stored in terms of the spherical harmonic indices of the parts

part correspondence

- models with similar appearance

part correspondence

- objects with dissimilar global appearance

shape retrieval

- performance on the SHREC’07 watertight database

shape approximation and compression

- given the Reeb graph \(\text{RG}(M,f) \) of \(f \): Morse and simple, a rough shape chartification is obtained

1-strip contains one max or min
one boundary component

3-strips contains one saddle
three boundary components

\(f \) may assume different values on each of these three boundary components

138K

2.6MB

v=3.8K

138K

v=35K

t =69K
Mathematical Tools for 3D Shape Analysis and Description

SGP 2013 Graduate School

wrap up
Silvia Biasotti

we have seen:
- how to represent a shape (topological spaces, manifolds, metric spaces, simplicial complexes...)
- how to analyze, describe, compare shapes (geodesics, curvature, diffusion geometry, Morse theory, algebraic machinery...)
- examples of different applications

we have investigated:
- space, invariance, property...
- theoretical assumptions vs real world assumptions

but if we go back to «real» shapes and problems, are we sure that everything works ok?
- services which could use the theories discussed
- discretization issues and applicability

complex shapes, complex problems

online repositories of 3D models
- Google 3D Warehouse
 http://sketchup.google.com/3dwarehouse/
- 3Dvia
 http://www.3dvia.com/search/
complex shapes, complex problems

✓ online repositories of 3D models
 – Google 3D Warehouse http://sketchup.google.com/3dwarehouse/
 – 3Dvia http://www.3dvia.com/search/
 – Turbosquid http://www.turbosquid.com/
 • “…search our stock catalog to get the 3D model you want, or use our Custom 3D modeling service for made-to-order 3D models. Join the world’s top artists who use TurboSquid 3D models in advertising, architecture, broadcast, games, training, film, the web, and just for fun”

complex shapes, complex problems

✓ 3D Object Retrieval & Content-based search
 – Princeton Shape Benchmark
 – Digital Shape Workbench v5.0 http://visionair.ge.imati.cnr.it/

to sum up: theory says ...

✓ 3D shapes maybe very complex and services we can imagine for sharing, searching, and even design new shapes are many, so...
✓ … how to get out of this maze?
✓ basics
 – the choice of one or another shape description should be guided by
 ▪ type of shapes and their variability/complexity
 ▪ invariants or properties to be preserved / captured
 ▪ topological spaces and functions are promising to model and reason about similarity in a mathematically well-formulated manner

pay attention to...

✓ … the right space
 ▪ rigid transformations (rotations, translations)
 ▪ Euclidean distances
 ▪ isometries
 ▪ Riemannian metric
 ▪ curvature (but unstable to local noise/perturbations)
 ▪ geodesics, diffusion geometry, Laplacian operators, etc
 ▪ local invariance to shape parameterizations
 ▪ conformal geometry
 ▪ similarities (i.e. scale operations)
 ▪ normalized Euclidean distances
 ▪ affinity (and homeomorphisms)
 ▪ persistent topology
 ▪ Morse theory
 ▪ size theory

pay attention to...

✓ … a suitable shape description
 – coarse coding (but fast)
 ▪ histograms
 ▪ matrices
 ▪ articulated shapes
 ▪ medial axes
 ▪ Reeb graphs
 ▪ overall global appearance
 ▪ silhouettes
 ▪ if shape loops are relevant
 ▪ persistent topology
 ▪ graph-based descriptions

pay attention to...

✓ importance of benchmarking and evaluation!
 – not only publishing papers but also to demonstrate real innovation and applicability potential
✓ Shape segmentation benchmark
 – SHape Retrieval Context http://www.aimatshape.net/event/SHREC
 – an annual event to to evaluate the effectiveness of 3D shape analysis algorithms
 – a multi-track event spanning
 ▪ different models: from watertight objects to triangle soups, from abstract shapes to medical data
 ▪ different tasks: from 3D retrieval to correspondence finding and segmentation

to sum up: benchmarking
to evaluate the stability of the algorithms under variations of abstract shapes characterized by
- smooth/sharp features,
- partial/global symmetries
- different genus

to create a new benchmark where to measure the capability of the retrieval methods to be invariant to
- noise addition and resampling
- deformations

9 transformations, 3 degrees each, for a total of 27 perturbations:
1. addition of Gaussian noise
2. different regular sampling
3. uneven sampling
4. & 5 two stretching
6. & 7 two non-uniform dilations
8. & 9 two non-uniform erosions

504 watertight models without self-intersections

recall-precision curves (whole dataset)

recall-precision curves (deformations)
conclusions

✓ the right tool for the right problem
 – mathematically sound methods
 – benchmarking & evaluation
✓ geometry, structure, similarity, context
 – is it possible to understand something about functionality or affordance?
 – machine learning vs geometric-reasoning
 – 3D query modalities
 – what if shape is influenced/modified by the context?

acknowledgements

✓ IQmulus: A High-volume Fusion and Analysis Platform for Geospatial Point Clouds, Coverages and Volumetric Data Sets, European project “FP7 IP”, 2012-2106
✓ VISIONAIR: Vision Advanced Infrastructure for Research, European project “FP7 INFRASTRUCTURES”, 2011-2015
✓ MULTISCALEHUMAN: Multi-scale Biological Modalities for Physiological Human Articulation, European project “FP7 PEOPLE” Initial Training Network, 2011-2014
✓ Patrizio Frosini, Massimo Ferri and the Vision Mathematics group at the Dept. of Mathematics, University of Bologna
✓ Claudia Landi, Dept. of Science and Methods of Engineering, University of Modena and Reggio Emilia

at the end...

SGP 2013 Graduate School
	hank you for your attention!

these course notes are available at: http://www.ge.imati.cnr.it/training