Mathematical Tools for 3D Shape Analysis and Description

Silvia Biasotti, Andrea Cerri, Michela Spagnuolo
Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”

Outline
- motivation
- mathematics and shape analysis challenges (11:35–11:45)
 - shape properties and invariants
 - similarity between shapes
- tools and concepts, part I (11:45–12:15)
 - topological spaces, functions, manifolds
 - metric spaces, isometries, curvature, geodesics
 - Gromov-Hausdorff distance
 - concepts in action
- tools and concepts, part II (14:00–15:00)
 - basics on topology, homology and Morse theory
 - natural pseudo-distance
 - concepts in action
- conclusions (15:00–15:15)

01/07/2013
3D Shape Analysis and Description

Where are we now?
- technology today
 - plenty of 3D acquisition techniques
 - hardware for visualizing 3D on the desktop
 - computer networks: fast connections, low cost
 - 3D printers: not only mock-ups but even end products

rendering, acquiring, transmitting, “materializing” 3D content is now feasible in specialized as well as unspecialized contexts

01/07/2013
3D Shape Analysis and Description

3D media
- professionals
 - Product Modeling & Design
 - Cultural Heritage
 - Gaming
 - Spatial Data
 - Simulation
 - Medicine
 - Bioinformatics
 - Architecture
 - Archaeology
- non professionals
 - 3D social networking
 - fabbing
 - ...
shape and geometry

✓ “... all the geometrical information that remains when location, scale, and rotational effects are filtered out from an object” [Kendall 1977]

shape and similarity

✓ “...the form of something by which it can be seen (or felt) different by something else” [Longman Dictionary of Contemporary English]

shape, similarity & the observer

✓ things possess a shape for the observer, in whose mind the association between the perception and the existing conceptual models takes place [Koenderink 1990]

understanding, reasoning, similarity is a cognitive process, depending on the observer and the context

shape and view points

objects and similarity

geometric congruence

structural equivalence

functional equivalence

semantic equivalence
objects and similarities

- geometric congruence
- structural equivalence
- functional equivalence
- semantic equivalence

shape and description

- shape descriptions reduce the complexity of the representation; their choice depends on
 - type of shapes and their variability/complexity
 - invariants or properties

shape descriptions

- different shapes should have different descriptions
 - different enough to discriminate among shapes
- a shape may not be entirely reconstructed from its description

what's invariance?

- invariance = the descriptor does not change for a given object under a class of transformations
 - a property P is invariant to a transformation T applied to an object O iff
 \[P(T(O)) = P(O) \]

shape descriptions and similarity

- similarity in what sense?
 - defining appropriate similarity measures between shapes

mathematics: shape description and similarity

- similar shapes with respect to what?
 - shape descriptions, to code the aspects of shapes to be taken into account and manage the complexity of the problem

- similarity in what sense?
 - transformations among the shapes that we consider irrelevant to the assessment of the similarity
 - invariants or properties

shape and description

- shape descriptions reduce the complexity of the representation; their choice depends on
 - type of shapes and their variability/complexity
 - invariants or properties

what's invariance?

- invariance = the descriptor does not change for a given object under a class of transformations
 - a property P is invariant to a transformation T applied to an object O iff
 \[P(T(O)) = P(O) \]
things are not that easy...

✓ to deal with the complexity at a hand...
✓ we need tools to reason about
 – connectivity, interior, exterior and boundary
 – measuring shape properties and invariants
 – well-posedness
 – robustness and stability
 – distance and proximity
 – etc.…

Mathematical Tools for 3D Shape Analysis and Description

SGP 2013 Graduate School

Silvia Biasotti

tools and concepts, part I

content

✓ tools and concepts
 – topological spaces
 – continuous and smooth functions
 – homeo- and diffeomorphisms
 – manifolds
 – transformations
 – metric spaces
 – intrinsic properties
 • curvature
 • conformal structure
 • geodesic distances
 • Laplace-Beltrami operator
 – Gromov-Hausdorff distance
✓ concepts in action

why topological spaces?

✓ to represent the set of observations made by the observer (e.g., neighbor, boundary, interior, projection, contour):
✓ to reason about stability and robustness

topological spaces

✓ a topological space is a set X together with a collection T of subsets of X, called open sets, satisfying the following axioms:
 1. $X, \emptyset \in T$
 2. any union of open sets is open
 3. any finite intersection of open sets is open

✓ the collection T is called a topology on X

why functions?

✓ to characterize shapes
✓ to measure shape properties
✓ to model what the observer is looking at
✓ to reason about stability
✓ to define relationships (e.g., distances)
continuous and smooth functions

- let X, Y topological spaces, $f: X \to Y$ is continuous if for every open set $V \subseteq Y$ the inverse image $f^{-1}(V)$ is an open subset of X.
- let X be an arbitrary subset of \mathbb{R}^n: $f: X \to \mathbb{R}^m$ is called smooth if $\forall x \in X$ there is an open set $U \subseteq \mathbb{R}^n$ and a function $F: U \to \mathbb{R}^m$ such that $F = f|_U$ on $X \cap U$ and F has continuous partial derivatives of all orders.

why manifolds?

- to formalize shape properties
- to ease the analysis of the shape
 - measuring properties walking on the shape
 - look at the shape locally as if we were in our traditional euclidean space
 - to exploit additional geometric structures which can be associated to the shape

manifold

- manifold without boundary
 A topological Hausdorff space M is called a k-dimensional topological manifold if each point $q \in M$ admits a neighborhood $U \subseteq M$ homeomorphic to the open disk $D^k = \{ x \in \mathbb{R}^k \mid ||x|| < 1 \}$ and $M = \bigcup_{i \in \mathbb{N}} U_i$.
- k is called the dimension of the manifold.

manifold

- manifold with boundary
 A topological Hausdorff space M is called a k-dimensional topological manifold with boundary if each point $q \in M$ admits a neighborhood $U_i \subseteq M$ homeomorphic either to the open disk $D^k = \{ x \in \mathbb{R}^k \mid ||x|| < 1 \}$ or the open half-space $\mathbb{R}^{k-1} \times \{ y \in \mathbb{R} \mid y \geq 0 \}$ and $M = \bigcup_{i \in \mathbb{N}} U_i$.

smoothness and orientability

- transition functions
 Let $\{(U_i, \varphi_i)\}$ an union of charts on a k-dimensional manifold M, with $\varphi_i: U_i \to D^k$. the homeomorphisms $\varphi_{ij}: \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ such that $\varphi_{ij} = \varphi_j \circ \varphi_i^{-1}$ are called transition functions.

smoothness and orientability

- smooth manifold
 A k-dimensional topological manifold with (resp. without) boundary is called a smooth manifold with (resp. without) boundary, if all transition functions φ_{ij} are smooth.
- orientability
 A manifold M is called orientable if there exists an atlas $\{(U_i, \varphi_i)\}$ on it such that the Jacobian of all transition functions is positive for all intersecting pairs of regions.
Examples

- 3-manifolds with boundary:
 - a solid sphere, a solid torus, a solid knot

- 2-manifolds:
 - a sphere, a torus

- 2-manifold with boundary:
 - a sphere with 3 holes, single-valued functions (scalar fields)

- 1 manifold:
 - a circle, a line

Metric space

A metric space is a set where a notion of distance (called a metric) between elements of the set is defined formally.

\[(X, d) \]

where

- \(X \) is a set
- \(d \) is a metric on \(X \) (also called distance function), i.e., a function
 \[d : X \times X \to \mathbb{R} \]
 such that
 - \(d(x, y) \geq 0 \) (non-negative)
 - \(d(x, y) = 0 \) iff \(x = y \) (identity)
 - \(d(x, y) = d(y, x) \) (symmetry)
 - \(d(x, z) \leq d(x, y) + d(y, z) \) (triangle inequality)

Transformations

- Congruence
 - two objects are congruent if one can be transformed into the other by rigid movements (translation, rotation, reflection – not scaling)

- Similarity
 - two geometrical objects are called similar if one can be obtained by the other by uniform stretching. Formally, a similarity of a Euclidean space \(S \) is a function \(f : S \to S \) that multiplies all distances by the same positive scalar \(r \), so that:
 \[d(f(x), f(y)) = r d(x, y) \quad \forall x, y \in S \]

- Affinity
 - it preserves collinearity, i.e., maps parallel lines into parallel lines and preserve ratios of distances along parallel lines
 - it is equivalent to a linear transformation followed by a translation
Homeo- & Diffeo- morphisms

A homeomorphism between two topological spaces X and Y is a continuous bijection $h: X \rightarrow Y$ with continuous inverse h^{-1}.

Given $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$, if the smooth function $f: X \rightarrow Y$ is bijective and f^{-1} is also smooth, the function f is a diffeomorphism.

Transformations and Similarities

An isometry is a bijective map between metric spaces that preserves distances:

\[f: X \rightarrow Y, \quad d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2) \]

Looking for the right metric space...
- the Euclidean distance $d(x, y) = \sum_{i=1}^{n} (x_i - y_i)^2$
- geodesic distances, diffusion distances, ...

Invariance and Isometries

A property invariant under isometries is called an intrinsic property.

Examples:
- the Gaussian curvature K
- the first fundamental form
- the geodesic distance
- the Laplace-Beltrami operator

Geodesic Distance

The arc length of a curve γ is given by $\int_{\gamma} ds$. Minimal geodesics: shortest path between two points on the surface. Geodesic distance between P and Q: length of the shortest path between P and Q. Geodesic distances satisfy all the requirements for a metric. A Riemannian surface carries the structure of a metric space whose distance function is the geodesic distance.
Gromov-Hausdorff distance

Let \((X, d_X), (Y, d_Y)\) be two metric spaces and \(C \subset X \times Y\) a correspondence, the distortion of \(C\) is:

\[
\text{dis}(C) = \sup_{(x,y),(x',y') \in C} |d_X(x, x') - d_Y(y, y')|
\]

The Gromov-Hausdorff distance is

\[
d_{\text{GH}}(X, Y) = \frac{1}{2} \inf_C \text{dis}(C)
\]

Properties

The Gromov-Hausdorff distance is parametric with respect to the choice of metrics on the spaces \(X\) and \(Y\).

Common choices

- Euclidean distance (extrinsic geometry)
- Geodesic distance (intrinsic geometry) or, alternatively, diffusion distance

\[
d^2_{X,t}(x,y) = \sum_{i=0}^{\infty} e^{-2\lambda_i t} \langle \psi_i(x) - \psi_i(y) \rangle^2
\]

where \((\lambda_i, \psi_i)\) is the eigensystem of the Laplacian operator and \(t\) is time.

Concepts in Action

- Surface correspondence
- Attribute transfer
- Surface tracking
- Shape analysis (brain imaging)
- Symmetry detection
- Compression
- Completion
- Matching
- Beautification
- Alignment
-...

...stay tuned.... see the Michael Bronstein’s talk

References

- J. Jost, Riemannian geometry and geometric analysis, Universitext, 1979
- M. Gromov, Metric structures for Riemannian and Non-Riemannian spaces, Progress in Mathematics 152, 1999

SGP 2013 Graduate School