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Nowadays, digital 3D models are in widespread and ubiquitous use, and each specific application

dealing with 3D geometry has its own quality requirements that restrict the class of acceptable

and supported models. This article analyzes typical defects that make a 3D model unsuitable for
key application contexts, and surveys existing algorithms that process, repair, and improve its

structure, geometry, and topology to make it appropriate to case-by-case requirements.

The analysis is focused on polygon meshes, which constitute by far the most common 3D
object representation. In particular, this article provides a structured overview of mesh repairing

techniques from the point of view of the application context. Different types of mesh defects are

classified according to the upstream application that produced the mesh, whereas mesh quality
requirements are grouped by representative sets of downstream applications where the mesh is to

be used. The numerous mesh repair methods that have been proposed during the last two decades
are analyzed and classified in terms of their capabilities, properties, and guarantees. Based on

these classifications, guidelines can be derived to support the identification of repairing algorithms

best-suited to bridge the compatibility gap between the quality provided by the upstream process
and the quality required by the downstream applications in a given geometry processing scenario.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and

Object Modeling

General Terms: Boundary representation, Geometric algorithms, languages, and systems

Additional Key Words and Phrases: Fixing, Topology, Geometry

1. INTRODUCTION

Digital 3D models are key components in a vast number of industrial and scientific
sectors, such as product design and manufacturing, gaming and simulation, cultural
heritage and archaeology, medicine, bioinformatics and pharmaceutical sciences. In
most cases, visualization is just one of the many steps constituting the lifecycle of a
digital 3D model. 3D geometry, indeed, often needs to be analyzed and processed
through advanced algorithms that typically have strict requirements on the quality
and integrity of their input. In practice, these requirements are often not met by
models originating from various sources. Thus, adapting imperfect 3D models to
such requirements is a task of high importance.

Although many representations have been proposed for 3D models, polygon and
triangle meshes are a de facto standard in most domains. Besides being extremely
flexible and expressive, polygon meshes have been directly supported by accelerated
graphics hardware for several years, and this contributed to their diffusion and
establishment.
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The vast majority of today’s 3D mesh models originate from one of two common
data sources: from digitization of real-world objects or phenomena, or from tessel-
lation of virtual, synthetic data typically produced in a computer. Examples of the
first case are surface scanning [Bernardini and Rushmeier 2002], shape from shad-
ing [Zhang et al. 1999], 3D photography [Curless and Seitz 2000; Seitz et al. 2006],
medical imagery [Zhang et al. 2002], whereas synthetic 3D data often originates
from implicit mathematical formulations [Turk and O’Brien 2002], CAD systems
[Farouki 1999], or sketch-based modelling [Igarashi et al. 1999]. These two sources
of 3D data correspond to different modeling pipelines; both of them lead to surface
meshes with particular characteristics which are not always suitable for all possi-
ble downstream applications. Thus, in these cases some form of mesh repairing is
required to adapt the raw models to the requirements of the applications at hand.

Digitized models Although 3D digitization tools are becoming more and
more flexible, each specific downstream application has its own requirements that
restrict the class of supported 3D models. In industrial design, for example, several
processes assume that the mesh does not contain degenerate, or nearly degenerate,
elements. In computer graphics, numerous shape analysis tools expect the input
mesh to enclose a well-defined solid. Such tools typically fail if the mesh has holes,
or produce unpredictable results if the input has self-intersections. In most cases,
digitizing a real-world 3D object amounts to capturing several views of the object
(i.e. the range images) which are eventually aligned and merged into a single model
[Bernardini and Rushmeier 2002]. While this is sufficient for mere visualization
purposes, at this stage polygon meshes may contain degenerate elements, overlap-
ping or self-intersecting parts, surface holes, and a number of other flaws that make
them unsuitable for a wide spectrum of applications.

Synthetic models The currently established pipeline for computer-aided prod-
uct modeling involves several steps. Most often, a creative designer draws a sketch
on paper, a CAD professional translates the sketch to a patch-based boundary rep-
resentation (B-rep) in a CAD system and, finally, tessellation algorithms generate
triangle meshes for downstream applications such as structural simulation or rapid
prototype printing, to name a few. Normally, downstream applications assume that
their input meshes are closed and consistent manifolds. Thus, the tessellation step
should take this requirement into account and produce proper meshes. Unfortu-
nately this is not the case in many tools. Tessellation algorithms typically create a
separate mesh per patch and, though each such mesh might respect all the require-
ments, neighboring patches are often not continuously and consistently connected
and, in some cases, they overlap or intersect. This leads to several artifacts which
typically require a manual and tedious post-processing to fix the model. This moti-
vates the significant effort that has been spent so far on developing algorithms that
are able to (semi-)automatically repair mesh models.

1.1 Overview and Motivation

The objective of this report is to provide a comprehensive reference to mesh re-
pair techniques from a practical application perspective. Thus, we first categorize
upstream applications based on the typical characteristics/defects of the meshes
they produce. Then we provide a classification of downstream applications based
on the requirements they typically impose on their input meshes. Finally we cate-
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gorize possible defects and existing repair algorithms along with their own specific
requirements on the input and the characteristics of the output they produce. By
looking at the combinatorics of upstream application (data source), repair method,
and downstream application based on these criteria, the reader can choose which
repair methods are well suited for the data-link between an upstream-downstream
pair (as they are established in various geometry processing pipelines).

Repairing algorithms are categorized based on several characteristics including
the approach employed (e.g. local corrections or global remeshing), the quality re-
quirements on their input, and the guarantees of their output. Furthermore, we
distinguish between algorithms that fix local connectivity flaws, global topology
issues, geometric errors, or a combination of the above. With the exception of algo-
rithms that fix geometric errors, for which a methodological perspective is given by
Ju [2009], treatment of the other defect categories is mostly unsurveyed in current
literature. Thus, this report collects algorithms that treat either combinatorial,
topological, or geometrical issues and puts them under the common category of
mesh repairing techniques while considering practical problems such as the defi-
nition of repairing workflows that vertically integrate multiple algorithms for the
needs of a specific application. Furthermore, the problem of mesh repairing is de-
scribed from an application perspective, and hence considers the context where
repairing is necessary by focusing on the aforementioned data-link problem between
upstream and downstream applications.

2. DEFINITIONS

Since the facets of polygon meshes can typically be triangulated, in the remainder
we focus on meshes with triangular facets. Undesirable characteristics of a triangle
mesh can be roughly classified as topological or geometrical defects. For this reason,
in order to better describe the problem, we aim to maintain a clear separation
between topology and geometry. We adopt the notation of Attene and Falcidieno
[2006] and denote a triangle mesh as a pair M = (P,Σ), where P is a set of N vertex
positions pi = (xi, yi, zi) ∈ R3 with 1 ≤ i ≤ N , and Σ is an abstract simplicial
complex over these vertices which contains all the topological information.

We say that M is combinatorially manifold iff Σ is a combinatorial manifold [De
Floriani et al. 2003]. In its turn, Σ is a combinatorial manifold iff all its vertices
are manifold, and a vertex of Σ is manifold if its neighborhood is homeomorphic to
a disk in the topology of Σ.

The geometric realization of a simplex σ is the convex hull of the point positions
of its vertices and the union of all the geometric realizations of the simplices of
M is the geometric realization of M , denoted by |M |. |M | is a set of points in
R3 for which a Euclidean topology exists, and we say that M is geometrically
manifold iff the neighborhood of each point in |M | is homeomorphic to a disk in
this topology. Note that a triangle mesh may be manifold in the combinatorial
sense and not in the Euclidean one, e.g. when the mesh self-intersects. Also, a
geometrically manifold mesh may be not combinatorially manifold, e.g. when there
is a topologically singular edge with three incident faces, but two of them coincide
geometrically. A triangle mesh is orientable iff all its triangles can be oriented
consistently.
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Orientable, manifold meshes enclose well-defined solids by separating the embed-
ding space into interior and exterior volumes. In this sense they represent “real”
objects.

2.1 Problem Statement and Repairing Guidelines

In this report we loosely define a mesh repairing algorithm to be a process that takes
as input a surface mesh M and produces as output a modified version M ′ of the
input where some specific defects or flaws (as categorized and described in Section 3)
are removed or alleviated. As already mentioned, the type of algorithm(s) suitable
and the type of defect(s) that need to be fixed depend both on the upstream and
on downstream applications in a given scenario. Furthermore, it is important to
notice that some repairing algorithms have their own requirements on the input.
For example, most hole filling algorithms assume that the boundary of each hole is a
connected 1-manifold. Also, while fixing specific defects, some repairing algorithms
may newly introduce other flaws. Thus, in order to select a suitable algorithm (or a
combination of algorithms) for a specific case, it is useful to investigate the context
as follows:

(1) What is the upstream application ?
→ Determines characteristics and defects of M

(2) What is the downstream application?
→ Determines requirements on M ′

(3) Based on this information:
→ Is it necessary to repair M?

(4) If repairing is necessary:
→ Is there an algorithm that does it directly?

(5) If direct repair is not possible:
→ Can several algorithms be used in sequence?

(6) If not:
→ There is a gap in the state of the art.

As a support for step 1, Section 4.1 provides hints and tables to identify the po-
tential issues related to specific upstream applications. The same kind of support
is given for downstream applications (step 2) in Section 4.2. The combined infor-
mation reported in the tables gives an idea of the kind of repairing that is possibly
necessary (step 3) for a specific case. Then, in Section 5 existing algorithms are
surveyed and, for each of them, input requirements, defects treated, and output
characteristics are outlined. Finally, summary tables report this information to
support the analysis of steps 4 and 5.

In Section 5 and in the summary tables, further attributes of the repairing al-
gorithms are discussed (e.g. guaranteed success vs. best effort, automatic vs. in-
teractive, newly introduced flaws, ...), since these are important for the decision
process. For instance, if there is the need to have a guaranteed success, one may
opt for advanced algorithms that provide such guarantees, whereas if speed is more
important than strict quality or success guarantees, one may want to choose simpler
heuristics-based algorithms.
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In Section 6 we discuss the gaps in the available range of repairing methods that
could be identified and show up possible avenues for future work that could provide
further valuable contributions in the field.

3. DEFECTS AND FLAWS

Most graphic formats widely used to share 3D models (OFF, VRML, PLY, ...)
encode surface meshes through indexed face sets; specifically, these file formats
contain a first block specifying the positions of the vertices, and a second block
where each polygon is represented through a sequence of indices of vertices in
the first block. Clearly, files of this type are not guaranteed to represent a valid
simplicial complex, as they may easily encode non-manifold and/or non-orientable
sets of polygons, isolated elements, and a number of other flaws that are often the
source of problems in several application contexts. In the following sections we
provide a categorization of the main issues that may need particular treatment.
Specifically, we distinguish among issues about local connectivity (Section 3.1),
global topology (Section 3.2) and geometry (Section 3.3). Figure 1 illustrates these
various flaws and defects.

3.1 Local Connectivity

The first family of problems that most often needs to be treated regards the mesh
connectivity. Namely, it might happen that the set of (triangulated) polygons
encoded in a file does not constitute a combinatorially manifold simplicial complex.
There are various cases of such issues which we list in the following sections. Note
that we consider this family of problems to be established by pure mesh connectivity,
i.e. it includes issues of the abstract simplicial complex only. Holes and gaps in the
mesh do as well manifest themselves in the connectivity (e.g. edges with only one
incident face), but almost ever also in the geometric realization. Since the repair of
such issues heavily relies on the examination of the available input geometry (and
most often involves conceiving new geometry), we consider them geometric issues,
which are handled in Section 3.3.

3.1.1 Isolated Vertices. A vertex which is not a face of any other simplex of the
mesh is said to be isolated. Isolated vertices can often simply be ignored but, if
necessary, their removal is very simple and many existing tools provide manual or
automatic procedures to do that.

3.1.2 Dangling Edges. The specifications of some file formats allow the explicit
encoding of mesh edges in addition to vertices and facets. Examples of such formats
are OFF and PLY. This feature is most often unused but, when it is, it might encode
non-regular surfaces with so-called dangling, or naked edges; in other words, the
file format might represent edges with no incident triangles. A common strategy is
to simply ignore or remove these edges but they might also be exploited by some
approaches as a useful source of information about the intended underlying geom-
etry to be repaired. Due to their trivial treatment, isolated vertices and dangling
edges are not considered any further in the remainder of this report.

3.1.3 Singular Edges. When more than two polygons share a common edge,
then such an edge is said to be singular, complex, or non-manifold. This situation is

ACM Computing Surveys (scheduled to appear), Vol. 45, No. 2, June 2013.



6 · Marco Attene et al.

Isolated & Dangling Elements Singular Edge Singular Vertex

Topological Noise Inconsistent Orientation

Hole (with Islands) Gap (with partial Overlap)

(Self-)Intersection
(Near) Degeneracy

Noise Feature Chamfering/Aliasing

Fig. 1. Illustration of the various types of flaws and defects that can occur in polygon meshes.
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not unusual, especially when the mesh comes from tessellation of a multi-patch CAD
model. Clearly, even a mesh having just one singular edge is not a combinatorial
manifold; indeed, it is easy to prove that the endpoints of a singular edge cannot be
manifold vertices. Since the condition of combinatorial manifoldness is required in
several application contexts, there is a strong call for solutions that convert such a
mesh to a combinatorial manifold. Although this problem is not as easy to solve as
the case of unreferenced vertices or edges – due to the inherent ambiguity – some
solutions have been proposed in the literature and they are discussed in Section
5.1.1.

3.1.4 Singular Vertices. When a vertex is not manifold in the topology of the
abstract simplicial complex, it is called a combinatorially singular vertex. The
detection of such vertices is slightly more complicated than the detection of singular
edges. Indeed, while for edges it is sufficient to count the number of incident
triangles, for vertices it is necessary to count the number of connected components
in the neighborhood. By definition, a mesh with singular vertices cannot be a
combinatorial manifold. Solutions to this kind of problems are typically based on
the duplication of the singular vertex followed by a re-assignment of each component
of the neighborhood to one of the copies (cf. Section 5.1.1).

3.2 Global Topology

Flaws in the global topology of the object at hand are another source of poten-
tial problems when a mesh is processed. Herein, with global topology we denote
the overall topological characteristics of the surface, thus including the number of
connected components, the genus, the number of cavities and the orientability.

3.2.1 Topological Noise. The term topological noise was introduced by Guskov
and Wood [2001] to denote a common problem which arises when reconstructing
a surface starting from point clouds or when extracting isosurfaces from 3D im-
ages. Often, in these processes tiny handles or tunnels, which were not present in
the original object, are introduced in the constructed digital model due to alias-
ing effects or noise in the discrete underlying data. Hence, while a given real-
world object has a given topological genus, its digital counterpart may have a
different genus (usually much higher). For example, the famous Stanford Buddha
statue (http://graphics.stanford.edu/data/3Dscanrep/) actually has exactly
six topological handles, while the digital model produced by the team at Stanford
happens to have 104 such handles. The difference between the two has been concep-
tualized with the term topological noise. Clearly, this topological noise complicates
subsequent operations such as remeshing, parameterization, or smoothing. Section
5.1.9 outlines some solutions which have been proposed to eliminate this problem.

3.2.2 Orientation. As previously mentioned, polygons in an indexed face set
are represented through sequences of vertex indices. Typically, such indices are
not randomly listed, but their order indicates the orientation of the polygon. In
most rendering systems, the orientation is associated to the visibility of a face.
In other words, a polygon is visible only when its bounding vertices are ordered
counterclockwise (or clockwise) with respect to the observer’s point of view. Some
formats, such as VRML, allow the user to specify whether visibility must be granted

ACM Computing Surveys (scheduled to appear), Vol. 45, No. 2, June 2013.



8 · Marco Attene et al.

by a clockwise or counterclockwise ordering, but some others do not, and simply
assume a given ordering (most often counterclockwise). To grant full visibility in
all rendering systems, and to provide a coherent normal orientation for correct
surface analysis, it is often necessary to provide a unique consistent orientation to
all the polygons of a mesh. This is typically achieved by selecting a seed face and by
propagating the orientation to neighboring faces. Nevertheless, some configurations
are intrinsically not orientable, which means that to have a consistent orientation
the system must necessarily cut the surface [Attene and Falcidieno 2006].

3.3 Geometric Issues

This family of problems regards not only the abstract simplicial complex, but also
its geometric realization. In other words, the issues discussed in this section are
characterized by the position of the vertices. In contrast to the combinatorial defects
discussed so far, this family of problems is further complicated by the need to treat
continuous coordinates and intersections that (for efficiency reasons) are required to
be expressed and processed with finite precision arithmetics, which typically leads
to robustness issues.

3.3.1 Surface Holes and Gaps. When digitizing a real-world object through
standard laser range scanners, it is usual to encouter occluded parts which can-
not be captured because the laser beam is shadowed by other parts of the object.
Also, when designing a surface through standard CAD systems, the various tessel-
lated patches are typically slightly displaced in a way that – though the intention of
the designer was to construct a continuous surface – adjacent patches are separated
by undesired gaps. In other words, there are different scenarios where some of the
data cannot be produced directly, and thus must be compensated for in a second
step. Such steps are known as gap closing and hole filling. Typically, gaps and
holes are defined differently and are treated with different strategies. Most often
(although done less strictly in early literature) a gap is defined as the empty region
between two triangulated surface patches that should be continuously connected
but are not due to the gap. In contrast, a hole is an undesirably missing piece
of surface within a triangulated patch. A main difference between the two cases
is given by the connectivity of their boundaries: the boundary of a gap, indeed,
is typically made of two (or more) disconnected chains of edges; in contrast, the
boundary of a hole normally consists of one or more closed edge loops. Opposed
to gaps, which often are quite narrow, holes might represent larger areas of missing
data, such that their repair poses the further challenge of conceiving a plausible
geometry to fill the holes.

Since they are extremely important repairing tasks, gap and hole filling have
been studied deeply, and numerous algorithms exist, ranging from simple bound-
ary matching and hole triangulation up to more elaborate techniques which provide
some desirable properties, e.g. continuity of the normal field (cf. Sections 5.1.2 and
5.1.3). In their broadest sense, the terms gap and hole may also denote more specific
problems arising in CAD applications such as cracks and the so-called T-junctions.
Cracks are small, elongated portions of missing surface [Nielson et al. 1999] which
typically originate from a change of resolution in the tessellation algorithm across
adjacent patches. Most cracks are just surface holes and, as such, they can often
ACM Computing Surveys (scheduled to appear), Vol. 45, No. 2, June 2013.
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be fixed by simple triangulation – possibly requiring further considerations due to
the near-degenerate triangles that are often generated in this process. Some oth-
ers, however, are more complex gaps bounded by several curves that make their
connection ambiguous, and thus require specific matching procedures that can even
require human interaction [Barequet et al. 1998; Attene and Falcidieno 2006]. T-
junctions are particular cracks with null area: they are combinatorial holes or gaps
where some parts of the boundary coincide geometrically but are not combinato-
rially consistent. These configurations are often treated by inserting new vertices
and edges in order to make the boundaries compatible, but other solutions exist,
including the triangulation with zero-area triangles that are eventually fixed in a
further step (cf. Section 5.1.5).

When holes are due to occluded parts that could not be scanned, they might be
more complex in that they contain so-called islands, which are small disconnected
pieces of surface that the scanner could capture within the occluded region. The
boundary of holes with islands is not connected, which complicates their repair
and disqualifies many of the proposed hole filling methods. Hole filling methods
that investigate the input globally and consider the mutual relation of multiple
boundaries to handle such complex cases most often imply a complete conversion
and remeshing of the input (cf. Section 5.2).

Since, due to the involved ambiguities, the task of repairing meshes with holes
and gaps is inherently ill-posed, the user might need the freedom of interactively
selecting boundaries of holes to be filled or specific pairs of patches to be merged
(cf. Section 6.2). When holes are particularly large, it might be useful to reproduce
some known pattern from within the patch or from some shape repository to obtain
more plausible results than by smooth patches, that are often used for smaller holes.
Approaches of this kind are known as (example-based) mesh completion (cf. Section
5.1.4).

3.3.2 Degenerate Elements. Degenerate triangles are triangles with zero area.
Clearly, these elements are the source of several problems for numerous applications,
since many useful entities cannot be computed on such triangles (normal vectors,
circumscribing circles, barycentric coordinates, ...). Even though many software
packages include pre-processing functions to adapt the input mesh to their needs,
these functions are often not able to deal with degenerate triangles. Several appli-
cations which are strongly based on the compuation of the aforementioned entities
(e.g. finite element analysis or Delaunay refinement [Shewchuk 2002]) fail when
the mesh contains degenerate triangles or become unstable when it contains nearly
degenerate triangles. Some approaches have been introduced to fix this kind of
problem. They are discussed in Section 5.1.5.

Apart from these degeneracies and near-degeneracies, the general quality of tri-
angles is an important characteristic for some applications that have pronounced
requirements on the triangle aspect ratios, the interior angles, or the uniformity
and density of the vertex distribution over the surface. Converting a generic mesh
into one meeting such sorts of continuous quality criteria is the scope of surface
remeshing. Though in some cases this process of mesh quality enhancement may
be seen as a particular case of repairing, a comprehensive treatment of remeshing,
mesh refinement, and mesh simplification methods would lead us too far from the
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scope of this report. Therefore, we point the interested reader to specific surveys
in these fields [Alliez et al. 2008], [Luebke 2001].

3.3.3 Self-Intersections. In several application contexts the input mesh is as-
sumed to represent the boundary of some solid volume, and thus it is required
not to have self-intersections. While it is relatively easy to check a mesh for self-
intersections, resolving them is a challenging problem due to the inherent ambigui-
ties. Self-intersecting meshes are typically generated by tessellation of multi-patch
CAD models, by deformation of mesh models, by composing models out of multiple
parts without care, or when merging patches reconstructed from partial scans of
a 3D object. Due to the ambiguities, there is no common strategy to tackle this
problem, but some approaches, which are often tailored to specific scenarios, exist
(cf. Section 5.1.6).

3.3.4 Sharp Feature Chamfering. Most acquisition techniques, as well as sev-
eral remeshing and contouring algorithms, restrict each sample or vertex to lie on a
specific line or curve whose position is completely defined by a pre-established pat-
tern. In most cases, such a pattern cannot be adjusted to coincide with sharp edges
and corners of the model and, consequently, almost none of the samples lie on such
sharp features. This leads to aliasing artifacts, i.e. the sharp edges and corners of
the original shape are removed by the sampling process and replaced by irregularly
triangulated chamfers, which often result in a poor-quality visualization and high
L∞ distortion. Some methods exist that use the available information to deduce
the original geometry of the chamfered features and eventually reconstruct them
(cf. Section 5.1.7). Having such well-defined sharp features has clear advantages for
both visualization and reverse engineering.

3.3.5 Data Noise. Every digitization tool has a finite precision. Thus, the ac-
quired raw data of the sampled model contains additive noise from various sources.
A main challenge is to remove the noise while preserving the main morphology of
the underlying sampled surface, with particular care to high-frequency details like
corners, edges, or other sharp features. Noise reduction can be applied either be-
fore or after generating the mesh from the raw data. The advantage of denoising a
mesh rather than a point cloud is given by the fact that the connectivity informa-
tion implicitly defines the surface topology and provides fast access to neighboring
samples. This has been exploited to devise well-known noise-reduction algorithms
for meshes such as Laplacian smoothing and bilateral denoising (cf. Section 5.1.8).

4. APPLICATION-ORIENTED MESH REPAIRING

This section provides a reference to be used as a support when choosing mesh re-
pairing algorithms to link upstream to downstream applications in a given scenario.

4.1 Upstream Applications

In the context of repairing, upstream applications (or sources) can be character-
ized based both on the nature of the data modeled (i.e. (physical) real-world data
vs. (virtual) concepts) and on the approach employed to convert such data into
polygon meshes. Both, nature and conversion approach, can be the origin of de-
fects in a mesh. In essence, to identify all the potential defects of a mesh based
ACM Computing Surveys (scheduled to appear), Vol. 45, No. 2, June 2013.
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Table I. Typical (X) and sporadic (x) defects that might be intrinsic in the

concept or data used to create the model.
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Table II. Typical (X) and sporadic (x) defects originating from specific mesh

construction approaches.

Approach n
o
is

e

h
o
le

s

g
a
p

s

in
te

rs
ec

ti
o
n

s

d
eg

en
er

a
ci

es

si
n

g
u

la
ri

ti
es

to
p

o
lo

g
ic

a
l

n
o
is

e

ch
a
m

fe
re

d
fe

a
tu

re
s

Tessellation X X x

Depth image fusion X x x

Raster data contouring X

Implicit function contouring X x X

Reconstruction from points x x x x

Height field triangulation

Solid model boundary extraction X

on the upstream application that produced it, it is often sufficient to identify the
nature as well as the approach employed. In the remainder we determine the spe-
cific properties of the data nature and common mesh construction approaches. The
results are summarized in Tables I and II.

Nature A three-dimensional model can originate either from a virtual design
process or from digitization of real-world data. If a model is designed, the basic
concept is typically an abstraction, and downstream applications may face problems
such as non-manifoldness, gaps, and intersections. These defects are either caused
by inaccuracies in modeling or produced by description processes that are often
based on surface representations although solids are meant to be created. Opposed
to that, if the model is digitized, problems are mostly in the measured data and may
include noise, holes, chamfered features, and topological noise due to limitations of
the measurement process employed for digitization. These problems are intrinsic
in either the abstraction used or the data acquired (cf. Table I).

Approach Then, such abstraction/data is converted into a polygon mesh (if
not originally designed in polygonal form), and the conversion itself can be the
source of further flaws that depend on the specific approach used. Note that,
e.g. for the case of digitized data, we consider topological noise and chamfered
features to be already present “in the data” (that in most scenarios lacks precise
feature and topology information) since the approach applied to construct a polygon
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mesh from such digitized data is not responsible for the data-inherent ambiguities
that then often cause undesired results during meshing. With that in mind, for
the case of tessellation of, e.g., a CAD model, gaps and intersections might arise
due to the necessarily occurring deviation of each triangulated patch from the orig-
inal curved surface. Depending on the quality of the tessellation algorithm also
(near-)degenerate polygons might be created. In some cases the mesh-based fu-
sion of range images is rooted on local operations that might produce meshes with
self-intersections. Degeneracies and singularities might also be introduced due to
round-off errors and insufficient special case handling. This happens, for example,
when the fusion is performed by the Polygon Editing Tool (PET) software accom-
payning the widely diffused Minolta V910 laser scanner. The contouring of raster
data might produce meshes with singular edges if no disambiguation strategies are
used. The contouring of implicit functions usually chamfers sharp features if no
special measures for adaptation are applied – topological noise can also arise when a
fixed sampling pattern is used for contouring, but specialized surface-based methods
rather follow the iso-contours to better capture the topology. For the surface recon-
struction from point clouds various methods are available that do not introduce any
defects or flaws (apart from those already inherent in the point cloud), but there
are others that might leave holes or gaps and produce meshes with aliasing or topo-
logical artifacts even if the point cloud meets certain sampling criteria that would
allow for a correct reconstruction. The triangulation of height fields is a rather
simple process and respective methods usually do not introduce new defects. The
boundary extraction from solid models, e.g. tetrahedralized fields or point sets, can
yield non-manifold meshes with singular edges and vertices in cases of tangential
self-contact of the represented object. Table II summarizes these observations.

4.2 Downstream Applications

Giving a precise categorization of downstream applications based on their input
requirements would be rather complicated and bulky. Furthermore, such a clas-
sification would be inevitably incomplete as particular cases and new applications
arise too frequently. For these reasons, herewith we provide an overview of the
prototypical requirements of a discrete sampling or grouping of the continuum of
applications, while leaving the reader the freedom to filter or integrate this infor-
mation based on the specificity of the application at hand. We summarize the
requirements in Table III. For the purpose of mere visualization, only the existence
of significant holes is generally deemed unacceptable – all other types of defects
can often be neglected. This might be one of the reasons why the importance of
the topic “mesh repair” is often underestimated. To achieve pleasing renderings
of a certain visual quality, however, also noise, gaps, and chamfered features can
be adverse. For modeling and deformation tools, connected surfaces without de-
generacies are usually required – intersections are often acceptable in the case of
surface-based methods. Singularities and topological noise do not cause problems
for some methods, others require or prefer clean manifold meshes. For rapid proto-
typing purposes, the mesh model naturally needs to be convertible to a solid model,
i.e. it has to well-define an interior and exterior volume. For this purpose the mesh
definitely has to be closed and free of intersections and singular non-manifold con-
figurations that would prevent an unambiguous volume classification. For many
ACM Computing Surveys (scheduled to appear), Vol. 45, No. 2, June 2013.
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Table III. Typical quality requirements of groups of downstream applications.

For each group, the table reports the defects whose repairing is most often manda-
tory (X), optional (x), or unnecessary.
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Visualization x X x x

Modeling X X X x x

Rapid Prototyping X X X X

Processing X X X x X X x x

Simulation X X X X X X X x

geometry processing applications, the input mesh is additionally required to be free
of degeneracies and noise in order to allow for the computation of element prop-
erties and discrete differential quantities in a reasonable way. Aliasing effects like
topological noise and chamfered features negatively affect and disturb several of
these methods. In most cases, the simulation of real-world phenomena on digital
models poses the highest requirements on the model’s quality in order to be able
to achieve reliable results.

5. STATE OF THE ART

In this section we describe, analyze, and classify a reasonably complete set of meth-
ods that have been proposed for mesh repairing tasks during the last two decades.
On the highest level we distinguish between methods that use a local approach
(Section 5.1) and methods that employ a global strategy (Section 5.2). Specifically,
we say that an algorithm uses a local approach if it modifies the mesh only in the
vicinity of the individual defects and flaws, whereas the remaining parts of the sur-
face are kept completely unaltered. Conversely, global methods are typically based
on a complete remeshing of the input (implied by the use of some intermediate
data structure different from a polygon mesh): this allows to more easily achieve
robustness and the global investigation can help to resolve the ambiguities that
emerge during the repairing process in many cases in a more reasonable way – at
the cost of unnecessarily impairing the accuracy in flawless regions.

As a rule of thumb, highly-detailed, feature-rich meshes with mainly isolated
flaws should be fixed using local approaches to preserve as many details as possible.
Conversely, highly corrupted or inconsistent meshes with multiple types of defects
(e.g. polygon soups) would better be fixed through one of the global approaches
described in Section 5.2 – especially if one needs a guarantee that the repair process
succeeds. Global approaches typically are highly robust whereas local approaches
are less invasive.

In the remainder of this section, algorithms targeting the same set of flaws are
listed within tables where, for each method, the requirements of the input mesh
are reported along with other useful information such as the request for input
parameters, guarantees of success, accuracy of the results, and possible defects
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newly introduced by the repairing process itself.
It is worth mentioning that the table contents are not meant to be exhaustive

and exact; they just allow to quickly identify possible algorithms, or sequences of
algorithms, for a specific repairing task with its particular requirements. For exam-
ple, the objective of the “parameters” column is to indicate whether the algorithm
can be executed in a workflow without the need of a case-by-case user intervention.
Hence it indicates only parameters whose setting is normally necessary because the
user cannot rely on a suitable default preset. Other possible parameters are not
indicated here, e.g. because they are just used for a fine tuning of the algorithms
or because a default setting exists which is suitable for most of the practical cases.

5.1 Local Approaches

Local approaches to mesh repairing are suitable when input meshes have sparse
defects that prevent their exploitation in downstream applications. An algorithm
using such an approach locates each specific defect in the mesh and tries to fix it
while leaving the remaining model unaltered.

5.1.1 Manifold Connectivity. Meshes with non-manifold connectivity, i.e. con-
taining singular edges and vertices, can be categorized into two classes: those that
bound so-called regular sets [Mäntylä 1988] and those that do not. Those that
bound regular sets still well-define a solid volume – up to the singular contacts at
the non-manifold edges and vertices. For such meshes algorithms that split the
singular elements into multiple regular elements have been presented as described
below. For the general case (e.g. meshes containing singular edges with an odd num-
ber of incident faces), posing significant ambiguities, specialized or global methods
(cf. Section 5.2) are usually required.

The two algorithms proposed in [Guéziec et al. 2001] and [Rossignac and Cardoze
1999] convert meshes bounding non-manifold regular sets to sets of combinatorially
manifold meshes. Strictly speaking, a closed surface mesh can represent a regular set
only if it has no self-intersections. Nonetheless [Guéziec et al. 2001] and [Rossignac
and Cardoze 1999] are focused on the connectivity only, and hence can process
meshes with self-intersections as well. After having identified a singular edge having
2k incident faces, it is split into k manifold edges having exactly 2 incident faces
each. Such an edge-manifold representation may still contain singular vertices that
must be identified and duplicated properly.

While in [Rossignac and Cardoze 1999] a strategy is suggested to perform a
minimum number of such duplications, [Guéziec et al. 2001] introduced additional
operations to join the boundary edges of the mesh cut along the singular edges either
by simply contracting boundary loops (pinching) or by stitching nearby boundary
curves thus reducing the number of connected components (snapping).

Extensions of these works have been studied for higher dimensions in [De Flori-
ani et al. 2003], where the proposal is to keep some harmless singularities as long
as the model remains a so-called initial quasi-manifold, which is a weaker condi-
tion than manifoldness. For the particular case of three dimensions, [Attene et al.
2009] proposes two algorithms to remove singularities from tetrahedral meshes, one
guaranteeing combinatorial manifoldness, and the other guaranteeing geometrical
manifoldness. Any mesh without degeneracies that bounds a regular set can be
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Table IV. Algorithms converting the input to a mesh with manifold connectivity. The table

reports the type of defects fixed, the requirements on the input, and whether the results are in some
sense provably optimal or not. All the algorithms listed here require no parameters and provide

guarantees of success without introducing new defects in the mesh. However, algorithms that fix

combinatorial singularities only do not remove the possibly corresponding geometric singularities
which thus remain in the output.

Algorithm fixed defects input requirements optimal

[Rossignac and Cardoze 1999] combinat. singularities no boundary X

[Guéziec et al. 2001] combinat. singularities no boundary

[Attene et al. 2009] combinat. singularities no boundary,

(combinatorial)

[Attene et al. 2009] combinatorial and no boundary,
(geometrical) geometrical singularities degener., intersect.

tetrahedralized and processed.
Table IV summarizes the main characteristics of the abovementioned algorithms.

5.1.2 Gap Closing. Gaps are usually found between connected components of
a mesh, i.e. their boundary is formed by multiple disconnected chains of edges. It
is reasonable to assume that such gaps are quite narrow since their most common
sources are small tessellation, round-off, and conversion errors, as well as inaccurate
trimming or modeling. Hence, gap closing methods usually match boundaries by
considering their spatial proximity.

As a simplest variant Rock and Wozny [1992] merge vertices within a prescribed
tolerance distance, which allows to re-unite actually equivalent vertices that are
slightly displaced due to numerical round-off errors. Other researchers proceed
systematically along the boundary edges found in the input mesh and thereby have
better control over topological changes performed during the gap closing process.
Sheng and Meier [1995] as well as Barequet and Kumar [1997] proceed on a per-
edge basis and progressively merge, or “zipper”, pairs of boundary edge chains. In
order to resolve ambiguities that might be inherent in models with numerous gaps
in close proximity, they start from those pairs with smallest distances. Turk and
Levoy [1994] handle the special case of “negative gaps”, i.e. overlapping patches,
by clipping and merging.

Due to their pairwise processing, these methods do not introduce singular edges.
Though often desired, this behavior leaves remaining gaps in situations that are
only reasonably resolvable by producing a non-manifold mesh. To be more flexible
in this regard, Borodin et al. [2002] allow the creation of edges incident to more than
two faces, i.e. boundaries of more than two patches can be merged into a common
singular edge chain. They further enhance the zippering process by adapting the
mesh resolution using edge split operations where necessary before merging. This
makes the processing less tessellation-dependent and reduces distortions introduced
by edge merging. Patel et al. [2005] further introduce a threshold to choose between
two different modes of gap closing: very narrow gaps are closed using zippering,
whereas wider gaps are closed by “stitching”, which inserts strips of new triangles
to avoid shifting vertices too far.

Deviating from the progressive, greedy nature of these methods, Barequet and
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Table V. Algorithms for gap closing. They all can only guarantee (reasonable) gap-free output

if all gaps in the input are narrower than some specified threshold. Using high (or no) thresholds
to obtain guaranteed success can result in arbitrarily implausible results.

Algorithm input requirements parameters possible new flaws

[Rock and Wozny 1992] very small gaps gap width intersections, degen.,

singularities

[Sheng and Meier 1995] – gap width intersections, degen.

[Barequet and Kumar 1997] – gap width intersections, degen.

[Turk and Levoy 1994] overlapping parts gap threshold intersections, degen.

[Borodin et al. 2002] – – intersections, degen.,

singularities

[Patel et al. 2005] – – intersections, degen.,

singularities

[Barequet and Sharir 1995] – gap threshold intersections, degen.

[Bischoff and Kobbelt 2005] – gap width, degeneracies

resolution

Sharir [1995] tackle the problem differently: first a globally consistent matching of
(parts of) boundary curves is determined and, after that, stitching is performed. A
good matching is found heuristically using partial curve matching in 3D applied to
samplings of the boundary edge chains.

Since they rely on the detection of gaps by analyzing mesh boundaries, all these
methods are only able to handle gaps between two (or more) patch boundaries,
while gaps between a patch boundary and the interior of another patch as well as
gaps between two mesh components without boundaries are not handled. Such gaps
are harder to detect and harder to close since the input mesh needs more complex
modifications than just merging of edges or vertices. Furthermore note that gaps,
just as likely as being “empty space”, can also occur in form of small overlaps and
often come along with intersections. This hinders the described methods from being
able to provide strong guarantees regarding the quality of the output – maybe except
for that it contains no boundary edges anymore. Hence, especially for robustness
reasons, global repair methods (cf. Section 5.2) might be preferrable for these more
general cases. A hybrid variant has been presented by Bischoff and Kobbelt [2005]:
gaps as well as intersections are located within a voxel grid. Only in defective
voxels new flawless mesh parts are generated and integrated into the intact parts
of the input mesh to replace the defective regions. One of the hole-filling methods
described in the next section is also able to close gaps in an intersection-free manner
[Podolak and Rusinkiewicz 2005].

Table V summarizes the main characteristics of the abovementioned algorithms.

5.1.3 Hole Filling. In contrast to gaps, holes usually correspond to missing sur-
face parts. Therefore it is advisable to close them by inserting new geometry,
i.e. additional triangles (or more general: polygons).

Early methods detect holes by finding closed loops of boundary edges. Filling is
then performed by triangulating these boundary loop polygons. This can for in-
stance be performed by incremental greedy strategies according to simple heuristics
[Bøhn and Wozny 1992; Mäkelä and Dolenc 1993; Varnuska et al. 2005], or by more
elaborate randomized triangulation methods, that however require the boundary to
be parameterized over the plane [Roth and Wibowoo 1997]. Brunton et al. [2010]
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propose a simulated annealing based boundary “unfolding” approach that increases
the probability that such a planar parameterization can be obtained also for rather
complex hole boundaries. Pfeifle and Seidel [1996] heuristically introduce additional
vertices in the hole regions to establish a Delaunay-like triangulation.

These methods do not specifically pay attention to the geometric quality of the
surface that is produced to fill the holes. Especially for highly non-planar, con-
volved hole boundaries this might result in very unintuitive results. Considering
this, Barequet and Sharir [1995] employ a dynamic programming technique to find a
minimum area triangulation for holes. Liepa [2003] further improved this approach
by additionally considering discontinuity penalties along the hole boundaries and
applying mesh fairing techniques to the constructed hole filling patches. Bac et
al. [2008] built upon this and enhanced computational efficiency by performing fill-
ing and fairing interleaved in a multi-level procedure, Wei et al. [2010] describe a
generalization that takes internal angles, dihedral angles, and areas of the created
triangles into account simultaneously. The dynamic programming approach em-
ployed by these methods, however, is quite complex, such that the repair process
can be extremely time-consuming for holes with hundreds of edges (which are not
rare, e.g., in high resolution scans). Zhao et al. [2007] construct hole filling patches
by an advancing-front mesh generation method, derive desirable triangle normals
from the boundary regions of the input mesh and finally optimize their positions
according to a Poisson equation to achieve smoothness. Other techniques that have
been applied to derive intuitive geometry for hole regions are Radial Basis Function
interpolation [Branch et al. 2006], NURBS fitting [Kumar et al. 2007], curvature
energy minimization [Lévy 2003; Pernot et al. 2006], and Moving Least Squares
projection [Wang and Oliveira 2007; Tekumalla and Cohen 2004].

The latter method [Tekumalla and Cohen 2004] also attempts to tackle the
problem that all the aforementioned methods might very easily introduce self-
intersections: potential new triangles are simply tested for intersection with the
already existing mesh. However, due to the lack of a circumvention strategy, this
might prevent holes from getting filled. For this purpose Wagner et al. [2003]
applied a randomized optimization technique (simulated annealing) which can ad-
ditionally remove triangles to potentially escape such deadlocks. Convergence (to
some reasonable, predictable result) can, however, not be guaranteed.

Table VI summarizes the main characteristics of the abovementioned algorithms.
The described methods consider holes locally and fill them with patches with disc-

topology. They do not automatically evaluate the spatial relationship of multiple
boundary edge loops to come up with potentially better fitting hole patches con-
necting multiple boundary loops with patches with more complex topologies. This,
for instance, leads to the behavior that holes with so-called islands are handled
suboptimally: the outer hole is filled without considering the valuable geometric
information provided by the interior islands, and the islands themselves are closed
to some spurious, often intersecting, “blobs”.

In contrast, the approach described by Podolak and Rusinkiewicz [2005] considers
the problem globally to locally close holes (and also gaps). The input mesh is first
augmented with a tetrahedral space partitioning which is aligned with its polygons.
On account of this volumetric representation even extremely complex hole filling

ACM Computing Surveys (scheduled to appear), Vol. 45, No. 2, June 2013.



18 · Marco Attene et al.

Table VI. Algorithms for hole filling. Almost all of these might introduce new degenerate

elements and self-intersections, except for the last three that explicitly check for that – all but the
very last one, however, at the expense of possibly not being able to fill all holes. Also, for all but

this last globally oriented method, holes should be rather simple: highly convolved boundaries

result in implausible intersecting filling and islands result in spurious blobs.

Algorithm input requirem. parameters intersect.-free

[Bøhn and Wozny 1992] – –

[Mäkelä and Dolenc 1993] – –

[Varnuska et al. 2005] – –

[Roth and Wibowoo 1997] roughly planar

hole boundaries

–

[Brunton et al. 2010] simple

boundary loops

–

[Pfeifle and Seidel 1996] – –

[Barequet and Sharir 1995] – –

[Liepa 2003] – –

[Zhao et al. 2007] – –

[Branch et al. 2006] – –

[Lévy 2003] – –

[Pernot et al. 2006] – –

[Wang and Oliveira 2007] roughly planar
hole boundaries

moving least
squares radius

[Tekumalla and Cohen 2004] – MLS radius X

[Wagner et al. 2003] – sim. annealing
parameters

X

[Podolak and Rusinkiewicz 2005] no degen., inter-

sect., singular.

– X

patches (incorporating islands) can be obtained using graph-cut techniques while
still being able to guarantee that they do not cause any intersections. The input
is required to be already free of self-intersections, singularities, and degeneracies in
order to be able to guarantee manifold output.

The global repair methods presented in Section 5.2 can also be used to handle
complex holes reasonably and robustly by exploiting global relationship informa-
tion, e.g. in a discrete spatial representation. Additionally, some of them are not
restricted to holes that are identifiable by boundary edges. Note, however, that due
to the fact that holes usually represent missing information (about the geometry
as well as about the topology of the hole regions) even these methods can only
work heuristically – semi-automatic, interactive approaches (cf. Section 6.2) can be
useful to introduce higher-level knowledge about the object to be repaired into the
repair process by involving an expert user.

5.1.4 Mesh Completion. The hole-filling methods presented in the last section
mainly assume (locally) smooth surfaces and create (more or less) smooth hole-
filling patches by some form of fairing or interpolation. For non-smooth and struc-
tured surfaces this of course leads to implausible fillings. To remedy this issue, more
recently quite a number of mesh completion methods have been proposed. These
in general try to create more plausible fillings, matching in structure, texture, and
features, by examining and imitating the information found in the intact parts of
the input or in additional example models in some form.

One class of methods proceeds by not actually repairing a given input mesh, but
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Table VII. Algorithms for mesh completion. Input requirements, mandatory parameters, and

possibly introduced flaws are specified. The algorithmic descriptions are often focused on the pro-
cess of conceiving plausible geometry rather than integrating it into the input mesh. Hence strict

statements about the robustness, guarantees, etc., cannot always be made. For the point-based

methods of course a mesh reconstruction would have to follow, possibly introducing topological
noise and feature chamfering.

Algorithm input requirem. parameters possible new flaws

[Sharf et al. 2004] – (point-based) resolution (top. noise, alias.)

[Bendels et al. 2005] – (point-based) # of scale levels (top. noise, alias.)

[Breckon and Fisher 2005] – (point-based) window size (top. noise, alias.)

[Park et al. 2006] – (point-based) resolution (top. noise, alias.)

[Xiao et al. 2007] – (point-based) several (top. noise, alias.)

[Nguyen et al. 2005] roughly planar

hole boundaries

approx. thresh.,

# of scale levels

degeneracies,

intersections

[Xu et al. 2006] roughly planar

hole boundaries

model-aligned

images

degeneracies,

intersections

[Jia and Tang 2004] roughly planar
hole boundaries

tensor voting
parameters

degeneracies,
intersections

[Kraevoy and Sheffer 2005] manifold with

boundary

templates &

correspondences

intersections

[Pauly et al. 2005] – model database,

keywords

degeneracies,

intersections

completely “replacing” it by a template model that is fitted to the input by some
form of deformation or morphing. This approach of course constrains applicability
to specific narrow classes of input meshes and has for instance been used for scans of
human heads [Blanz and Vetter 1999; Kähler et al. 2002; Blanz et al. 2004], bodies
[Allen et al. 2003; Anguelov et al. 2005], or teeth [Kähler et al. 2002; Savchenko and
Kojekine 2002]. Most of these methods require additional information to facilitate
the fitting, e.g. in form of user-specified correspondences or feature markers in the
input data.

Other methods keep the input mesh and complete it by only filling the holes.
Since the merging of hole filling patches with an input mesh is hard to achieve
robustly, many of these methods work on point-sampled surfaces instead ([Sharf
et al. 2004; Bendels et al. 2005; Breckon and Fisher 2005; Park et al. 2006; Xiao
et al. 2007]), avoiding the need to explicitly deal with a mesh topology. Hence
they are not directly applicable to the mesh repair problem: surface sampling and
a complete remeshing are implied. In this sense they could be considered global
methods (cf. Section 5.2) in the mesh repair context – but in principle it is also
imaginable to retain the triangulation in the intact parts while meshing only the
hole-filling parts of the completed point set in some way.

These methods can in general be distinguished by whether they consider intra-
shape or inter-shape similarities. The first class is particularly useful for cases
where the texture and local features of the input itself should be replicated in
the hole regions. Algorithms of the latter class, exploiting inter-shape similarities,
i.e. examining sets of similar example models, are particularly suitable to achieve a
correct global structure and topology even in the case of extremely large amounts
of missing data.

Sharf et al. [2004] proposed a method of the former class: inspired by context-
based image completion methods they examine the intact parts of the input using a
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shape similarity measure to find suitable parts to fill hole regions in a coarse-to-fine
fashion. A variant of this method is described by Park et al. [2006]. The search
is performed in a manner which is discrete regarding location, rotation, and scale.
Other methods search on a finer per-point basis [Bendels et al. 2005; Breckon and
Fisher 2005]. Nguyen et al. [2005] – inspired by 2D texture synthesis – applied a
synthesis approach to local gradient images of a mesh in hole regions. A global
planar parameterization of the input mesh is required for this purpose. A similar
method (however for point-sampled surfaces) also based on texture synthesis ap-
plied to encoded geometric detail is described by Xiao et al. [2007]. Xu et al. [2006]
and Brunton et al. [2010] infer the missing geometry information by a shape-from-
shading technique resp. a photoconsistency measure applied to photos taken from
the real-world equivalent of a scanned object. Jia and Tang [2004] apply a tensor
voting approach to derive hole filling geometry, but no detailed information on the
actual patch merging is provided.

Kraevoy and Sheffer [2005] presented a method that uses a template mesh that
is fit either globally or locally to the incomplete input mesh to then derive hole-
filling patches from it. User intervention is needed to obtain correct base-meshes
for cross-parameterization purposes in cases of complex topologies or non-trivial
hole and gap configurations. Pauly et al. [2005] exploit multiple example models
retrieved from shape databases to enhance the completion process. Suitable models
are selected according to user-specified keywords and shape similarity. Parts from
several models are then cut out in an overlapping manner and merged with the
input using the approach described by Turk and Levoy [1994].

Table VII summarizes the characteristics of the mesh completion algorithms.

5.1.5 Degeneracy Removal. In [Botsch and Kobbelt 2001] a slicing technique is
used to detect and remove degenerate triangles from a manifold mesh. To avoid
numerical issues that would probably occur due to the degeneracies, the mesh slicing
operator only uses robust predicates to split faces in a controlled manner. Along
with a proper decimation scheme, this algorithm is able to remove the degenerate
faces from typical meshes generated by tessellation units in CAD systems.

In a different scenario, the algorithm included in [Attene 2010] focuses on raw
digitized meshes, and iteratively eliminates nearly degenerate faces using a combi-
nation of edge contractions and swaps. In this approach, as well as in [Botsch and
Kobbelt 2001], a triangle is declared to be degenerate if it has an angle either too
acute (≤ ε) or too obtuse (≥ π− ε). The algorithm is guaranteed to converge with
success when removing only exact degeneracies, that is, when the user-controlled
parameter ε is set to zero.

In both methods short edges are contracted to eliminate needle-like triangles,
thus care must be taken in order to avoid non-manifold results: if a contraction is
prevented to avoid such a possible new flaw, the algorithm cannot be guaranteed
to eliminate all the degeneracies.

Table VIII summarizes the main characteristics of the abovementioned algo-
rithms.

5.1.6 Self-Intersection Removal. The intersections between the various patches
of a tessellated CAD model can be located and removed as described in [Bischoff
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Table VIII. Algorithms eliminating degenerate faces and/or self-intersections. The table

reports the type of defects fixed (D = degenerate facets, S = self-intersections, H = holes, G =
gaps), the requirements on the input, possible parameters, guarantees of success (GS), accuracy

of the results (approximated vs. exact). None of these algorithms should introduce new defects.

Algorithm fixes input requirem. parameters GS accur.

[Botsch and Kobbelt 2001] D manifold thr. angle ε approx.

[Attene 2010] D, S, H – thr. angle ε approx.

[Bischoff and Kobbelt 2005] S, G manifold tolerance ε0 X approx.

gap width γ0
[Campen and Kobbelt 2010] S no boundary, – X exact

no degeneracies

[Granados et al. 2003] S – – X exact

and Kobbelt 2005], where a spatial subdivision (i.e. a voxel grid) grants the effi-
ciency, and accuracy is due to the locality of the approach. Modifications, indeed,
take place only within the voxels containing the flaws. There a valid geometry is
regenerated. The fixed model is guaranteed to stay within a user-prescribed dis-
tance ε0 from the input. The algorithm also closes gaps that might separate nearby
patches up to a user-specified distance γ0.

The approach presented in [Attene 2010] integrates several repairing algorithms.
It has been designed to fix raw digitized meshes and has no requirement on the
input. After having converted the mesh to an oriented manifold, it closes the
holes and removes degenerate faces. Then, it efficiently locates and repairs self-
intersections. In this approach, again, a spatial subdivision is used for efficiency. In
contrast to [Bischoff and Kobbelt 2005], however, the self-intersecting triangles are
assumed to be small due to the nature of the targeted models, so they are simply
removed and the resulting holes are filled. Clearly, this is not guaranteed to work
in all the cases, but for the class of models targeted it rarely fails and in general
introduces smaller distortions. This approach to self-intersection removal does not
require any user-defined parameter.

In general, managing intersecting geometry is a delicate issue because the finite
precision used to represent the intersections might not be enough to grant a robust
calculation of geometric predicates. In [Campen and Kobbelt 2010] this problem
has been avoided by converting the mesh to an intermediate plane-based BSP rep-
resentation [Bernstein and Fussell 2009], such that the actual calculation of the
intersections is unnecessary until the eventual production of the output. When
the input is provided with a fixed numerical precision, this algorithm guarantees
exactness and robustness while still achieving high performance and low memory
consumption. The input mesh must be closed and free of truly degenerate faces
that would hamper the computation of the plane-based representation.

An opposite approach is used by [Granados et al. 2003] where arbitrary preci-
sion arithmetic is used instead. This method is able to also treat models with
open boundaries and dangling/isolated elements, but the approach employed is less
efficient and has higher memory requirements.

Table VIII summarizes the main characteristics of the abovementioned algo-
rithms.

5.1.7 Sharp Feature Restoration. An interactive approach for restoring corrupted
sharp edges has been proposed in [Kobbelt and Botsch 2003]. The user is required to
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Table IX. Algorithms that reconstruct corrupted sharp features. The table reports the re-

quirements of the input, possible parameters, possible defects newly introduced by the repairing
itself.

Algorithm input requirements parameters possible new flaws

[Kobbelt and Botsch 2003] manifold interactive self-intersections

[Attene et al. 2005] manifold, – self-intersections,

no degeneracy degeneracies

[Chen and Cheng 2008] manifold, – self-intersections

no degeneracy

[Wang 2006] no niose, two thresholds self-intersections
no degeneracy

construct a number of “fishbone structures” (spine and orthogonal ribs) which are
automatically tessellated to replace the original chamfers. Though not automatic,
this method is particularly suitable for simple models with few sharp edges and
allows to sharpen the chamfers as well as to modify the swept profiles to produce
blends or decorated edges.

The EdgeSharpener method [Attene et al. 2005] provides an automatic procedure
for identifying and sharpening chamfered edges and corners. Based on the average
dihedral angle at edges smooth regions are grown on the mesh, and the strips of
triangles separating neighboring smooth regions are considered aliasing artifacts
made of chamfer triangles. EdgeSharpener infers the original sharp edges and
corners by intersecting planar extrapolations of the smooth regions. Then, chamfer
triangles and edges are subdivided, and the newly inserted vertices are moved to
the intersections so as to reconstruct the features.

In a different setting, Chen and Cheng [2008] consider the problem of recovering
sharp features within smooth patches interpolating filled surface holes. The pro-
posed sharpness-dependent filter is an iterative procedure where each step adjusts
the face normals, and the corrupted sharp feature is not required to be represented
by a single strip of triangles as in [Attene et al. 2005]. Similarly, motivated by
the need to repair meshes produced by dynamic remeshing strategies, [Wang 2006]
proposes another feature sharpening approach that allows the presence of vertices
in the interior of the chamfers. Contrary to the previously described algorithms,
in [Wang 2006] there is no obvious way to automatically deduce whether a patch
between two smooth regions is an actual blend or a corrupted sharp feature, so the
user is required to set a few parameters (two threshold values) used to distinguish
between these cases.

Since all these algorithms add material along the corrupted sharp features to
reconstruct them, and since there is no control that such new material does not
intersect other parts of the surface, these methods can potentially produce self-
intersecting meshes. Furthermore, in [Attene et al. 2005] the displacement of newly
inserted vertices may also produce degenerate triangles, though this happens only
rarely in practice.

Table IX summarizes the characteristics of the abovementioned algorithms.

5.1.8 Mesh Denoising. The removal of noise from meshes is a widely studied
problem, and a comprehensive discussion of all the existing algorithms in this area
would lead us too far from the scope of this survey. Thus, in this section we
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describe a subset of particularly significant works that well represent the various
approaches proposed in this research domain. For a more comprehensive list of
existing algorithms we point the reader to the state-of-the-art section in the recent
work of Fan et al. [2010].

A very simple iterative approach to mesh denoising is the so-called Laplacian
smoothing where, at each iteration, all the vertices are moved to the center of
mass of their neighbors. This method, however, tends to shrink the object while
removing the noise. A pioneering contribution preventing this shrinkage is due to
Taubin [1995] whose λ|µ algorithm alternates an inward diffusion (controlled by
a parameter λ) and an outward diffusion step (controlled by µ). Alternatively, in
[Vollmer et al. 1999] the key idea to avoid the shrinking is to push the vertices
obtained after each iteration of the Laplacian smoothing back into the direction of
the original vertices.

Though being able to successfully reduce the noise, possibly even without shrink-
ing, the aforementioned algorithms are not able to distinguish between a region
which is intended to be smooth from a region which is rich of morphological features;
consequently such features (which include sharp edges and corners) are smoothed
just like all the other regions. To cope with this problem, [Fleishman et al. 2003]
adapted the bilateral filtering techniques used in image processing to the case of
meshes, thus introducing a first feature preserving smoothing algorithm. Besides
specifying the number of iterations, the user must tune the bilateral filter based
on two parametrs σc and σs. Similarly, but using a different approach, Jones et
al. [2003] introduced a feature-preserving smoothing algorithm that (1) is non-
iterative and (2) does not have strict requirements on the mesh connectivity as it
can treat also so-called polygon soups. Though this method is based on two pa-
rameters, their optimal setting can be computed based on the variance of the noise
σnoise on the target mesh.

Based on an anisotropic mean curvature flow filtering, the algorithm presented
in [Hildebrandt and Polthier 2004] goes one step further, as it is able to actually
sharpen feature lines while removing the noise in the other regions of the mesh. A
slightly more accurate and more efficient approach which is able to better sharpen
the features is presented in [Sun et al. 2007].

Finally, by assuming that the surface being modeled by the noisy mesh is piece-
wise smooth, the method introduced in [Fan et al. 2010] is able to accurately recon-
struct all the sharp features lying at the intersection of multiple smooth regions,
while removing the noise in all the other parts. This algorithm is particularly suit-
able to reverse engineering applications dealing with man-made and mechanical
objects.

Note that the mesh denoising algorithms described in this section move vertices
to new positions, in general without any control that this displacement does not
cause the creation of degenerate faces or self-intesecting surface regions.

Table X summarizes the main characteristics of the abovementioned algorithms.

5.1.9 Topological Noise Removal. Dealing with topological defects is unavoid-
able in several applications. For some specific and well-defined cases, prior knowl-
edge about the topology of the mesh being reconstructed can be used to avoid the
production of unwanted handles or tunnels. A prominent example of such cases
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Table X. Mesh denoising algorithms. The table reports the type of repairing (N = noise

removal, F = feature preservation, S = feature sharpening), the requirements on the input, and
possible parameters (for iterative algorithms, n indicates the number of iterations). All these

algorithms are guaranteed to converge with success, though there is no way to prove that the

results are satisfactory in general. Also, all of them might generate meshes with degenerate faces
and self-intersections.

Algorithm fixed defects input requirements parameters

[Taubin 1995] N closed manifold λ, µ, and n

[Fleishman et al. 2003] N, F manifold σc, σs, and n

[Jones et al. 2003] N, F – σnoise

[Hildebrandt and Polthier 2004] N, S manifold λ and r

[Fan et al. 2010] N, S manifold n

is the reconstruction of the human brain’s cortex from MRI data [Xu et al. 2002],
where the desired model is known to be a genus zero surface a priori. For more com-
plex models with handles, tunnels and disconnected components, exploiting prior
knowledge to reconstruct a correct topology is more challenging, and methods based
on this paradigm may produce models whose topology is correct in a global sense
but is not the expected one (e.g. because a handle has been introduced in the wrong
part of the model). In some other cases possible ambiguities in the reconstruction
of a correct topology can be resolved by involving the user as suggested in [Sharf
et al. 2007a]. In many applications, however, this kind of interaction is infeasible
and a prior knowledge of the topology is either unavailable or cannot be exploited
for a correct reconstruction, such that potential topological errors must be removed
in a successive repairing step.

Some topology-correction algorithms work directly on the mesh, whereas many
others are designed to treat digital 3D images (i.e. voxel-based representations).
This latter class of methods can be used to fix the topology of meshes, too, but
only after a voxelization step, which consequently alters the geometry also where
it is not strictly necessary. Note that the request for a voxelization implicitly casts
these algorithms to the category of the global approaches handled in Section 5.2,
but we list them here amongst the others because they are specifically focused on
the repair of topological defects.

Mesh-based topology correction With the objective of removing all the
handles from a brain’s cortex mesh, Fishl et al. [2001] inflate the input mesh by
alternating steps of Laplacian smoothing and radial projection, so as to map the
original surface onto a sphere. Handles in the input are then located by looking for
big folds on the mapped surface. The part of the mesh surrounding each handle is
removed and the resulting holes are filled using disk-like patches.

Using a local wave front traversal, the algorithm proposed in [Guskov and Wood
2001] discovers the local topology of an oriented manifold mesh and identifies small
tunnels and handles. Then non-separating cuts are identified and the mesh is cut
and sealed along them, reducing the genus and thus the topological complexity of
the mesh. The size of the tunnels and handles to remove is controlled by a user-
defined threshold value. A more efficient algorithm tailored to models obtained
by digitization is presented in [Attene and Falcidieno 2006]. The gain in speed is
based on the observation that, for this class of models, the length of edges does not
vary too much across the mesh. Consequently, by considering a depth-first region
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growing, it is possible to locate handles in the vicinity of splitting points of the
region’s front. Again, the size of the tunnels and handles to remove is controlled
by a user-defined threshold value.

Earlier works in this area include [El-Sana and Varshney 1997], where the idea
of α-hulls over point sets was extended to polygon meshes. Intuitively, the idea
underlying the algorithm is to simplify the genus of a polygonal mesh by rolling a
sphere of radius α over it and filling up all the regions that are not accessible to the
sphere. This assumes that the mesh does not have boundaries. Note that besides
filling handles, this approach “simplifies” several other morphological features of
the surface (e.g. concave sharp edges) which are not accessible to the sphere. This
algorithm appears to be extremely difficult to implement and robustness issues
probably render it inappropriate for many practical cases.

All these algorithms may add material to fill the handles/tunnels, hence the
resulting meshes may self-intersect. However, it is worth noticing that in practice
undesired handles are typically small, therefore the added material is not overly
likely to intersect other parts of the surface.

Voxel-based topology correction With the input being a discrete volu-
metric representation, the algorithm presented by Wood et al. [2004] performs an
axis-aligned sweep through the volume to locate handles, computes their sizes, and
selectively removes them. Handles are found by incrementally constructing and
analyzing a Reeb graph, and their size is measured by a short non-separating cycle.
Their removal is performed on the volume data and the modifications are spa-
tially restricted in order to preserve geometrical detail. The method presented in
[Szymczak and Vanderhyde 2003] has the same objective but, instead of computing
a Reeb graph, it is based on a simpler morphological operation called topology-
sensitive carving that makes the method more appropriate to process models with
numerous handles – at the expense of typically being less precise. The user sets the
maximum number T of allowed topology-altering operations to stop the topological
simplification at the desired level.

By using an adaptive grid structure, the method of [Zhou et al. 2007] is capable
of processing huge models efficiently at very high resolutions (e.g. 40963, processed
in a few minutes on a standard PC). In contrast to [Wood et al. 2004], where a
Reeb graph is computed, they employ a discrete curve skeleton whose elements
are associated with solid parts of the model. This association is performed in a
way that the breaking of handles and the filling of tunnels by removing such parts
provably does not introduce new unwanted handles. The user is required to specify
the processing resolution and two thresholds ε and ε controlling the size of ring-like
handles to cut and tunnel-like handles to fill, respectively.

The algorithm introduced in [Ju et al. 2007] is based on similar principles but
goes one step further, as it allows not only to simplify excess topology, but also to
actually edit the topology of an object so as to make it equivalent to that of a given
target shape. This algorithm can easily remove or add various topological features
(e.g., handles, tunnels, or cavities) with minimal modifications of the input, but
of course, just like with all the other voxel-based methods, an additional deviation
from the input geometry due to the voxelization and meshing steps must be taken
into account when dealing with polygon meshes.
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Table XI. Algorithms that treat topological defects. The table reports the requirements on

the input mesh, possible parameters and defects possibly introduced by the repairing itself. Note
that [Fischl et al. 2001], [Han et al. 2002] and [Shattuck and Lehay 2001] do not require pa-

rameters but are meant to repair only models with zero desired handles (with the distinction of

foreground/backgroud handles in [Han et al. 2002]). The lower six methods work on a voxeliza-
tion, thus the input mesh is required not to have substantial surface holes that would jeopardize

the inside/outside classification – furthermore, if their output is meshed again, original features

might be chamfered due to the discrete intermediate voxel representation.

Algorithm input reqs. parameters possible new flaws

[El-Sana and Varshney 1997] no boundary radius α self-intersections
chamfered feat.

[Guskov and Wood 2001] oriented one threshold self-intersections

manifold

[Fischl et al. 2001] oriented – self-intersections

manifold

[Attene and Falcidieno 2006] – one threshold self-intersections

[Shattuck and Lehay 2001] no large holes – (chamf. features)

[Han et al. 2002] no large holes – (chamf. features)

[Szymczak and Vanderhyde 2003] no large holes one threshold (chamf. features)

[Wood et al. 2004] no large holes one threshold (chamf. features)

[Zhou et al. 2007] no large holes two thresholds (chamf. features)

[Ju et al. 2007] no large holes target “shape” (chamf. features)

Earlier works in this area include [Shattuck and Lehay 2001], where the segmented
MRI image of the brain cortex is processed to remove all the handles and tunnels,
and [Han et al. 2002], where the same problem is solved through a more flexible
approach which is not limited to the production of genus zero models.

Table XI summarizes the main characteristics of the abovementioned algorithms.

5.2 Global Approaches

The methods described in section 5.1 remove single defects like gaps, holes, singu-
larities, and self-intersections, mainly individually. The absence of these defects,
however, is usually not required for their own sake, but as part of (necessary condi-
tion for) the greater requirement for manifoldness that is imposed by many down-
stream applications. While it is relatively easy to check a mesh for combinatorial
and geometrical manifoldness, establishing it by these individual, local operations is
complicated by the fact that, e.g., the filling of holes or gaps might easily introduce
new self-intersections. Furthermore, the ambiguities that emerge (how to fill a hole,
how to connect patch boundaries, how to break singularities and intersections? ) are
hard to resolve in a consistent and plausible manner when only performing individ-
ual, local investigations.

To account for these issues, methods that repair meshes in a global manner,
considering also the mutual relations of individual defects, have been conceived.
Since even manifoldness is often not requested for its own sake, but as a condi-
tion for the mesh representing the boundary of some solid volume, many of these
global repairing methods use some kind of intermediate volumetric object represen-
tation instead of the polygon mesh boundary representation. This enables the use
of more meaningful disambiguation rules and allows to easily guarantee correctness
by using contouring methods which can guarantee robust re-conversion from the
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Table XII. Global repair algorithms. The table reports the requirements on the input as

well as the general methodology employed for making inside/outside decisions. All algorithms
are in principle able to guarantee producing defect-free output (although not necessarily plausible

and meaningful) – depending on the final mesh extraction approach employed, however, (nearly)

degenerate elements and singularities might be generated, but this can rather easily be prevented.
Requirements listed in brackets are not mandatory in order to be able to obtain some manifold

output, but hole/gap filling behavior is rather unlikely to be plausible if these are not met.

Algorithm input requirements signing method

[Oomes et al. 1997] no significant holes/gaps flood-filling

[Andújar et al. 2002] no significant holes/gaps flood-filling

[Curless and Levoy 1996] oriented range meshes line-of-sight

[Furukawa et al. 2007] oriented range meshes line-of-sight

[Davis et al. 2002] oriented normals & diffusion

[Guo et al. 2006] oriented normals & diffusion

[Masuda 2004] oriented normals & diffusion

[Sagawa and Ikeuchi 2008] oriented normals & area minimization

[Shen et al. 2004] oriented normals & MLS interpolation

[Verdera et al. 2003] oriented normals & inpainting

[Ju 2004] (no significant gaps) parity-counting

[Nooruddin and Turk 2003] – parity-counting, ray-stabbing

[Bischoff et al. 2005] – morphology & flooding

[Hétroy et al. 2011] – membrane shrinking

[Hornung and Kobbelt 2006] – morphology & graph cut

[Spillmann et al. 2006] – parity-counting

[Murali and Funkhouser 1997] (no significant holes) global sign optimization

intermediate volumetric representation to a consistent manifold mesh free of gaps,
holes, degeneracies, and intersections. Hence, the repairing task in such a volu-
metric setting in its core boils down to deciding which volume parts are inside and
which are outside of the represented object (e.g. by assigning signs to a distance
function representation). On the downside, often discrete voxel representations are
used as intermediate data structures and this might lead to aliasing, i.e. chamfered
features and possibly topological noise, in the result – not impairing manifoldness
but limiting the quality and accuracy of the output.

It is typical for these methods to implicitly address multiple types of defects.
Hence, we do not categorize them by the type of defect treated like the local ap-
proaches but by their input requirements. Note that in many cases these require-
ments are not strict: several of the methods will always output a manifold mesh by
their very design, no matter what the input – but the result is (much) less likely to
be reasonable if the “requirements” are not fulfilled by the input mesh.

Table XII provides a succinct overview of the global methods surveyed in the
following.

5.2.1 Input without Gaps/Holes. Early methods simply convert the input mesh
to a discrete volumetric representation (the samples either describing a distance
function or a binary solid/empty voxel classification) and re-convert it to a polygon
mesh. As mentioned above, the crucial step is the sign assignment. When assuming
hole-free input (small gaps and holes below voxel size are feasible), this can be done
by a simple flood-filling process from seeds known to be inside or outside [Oomes
et al. 1997]. Without such information provided additionally, one can at least start
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from a seed outside of the input’s bounding box. This results in the outer hull of the
input object being obtained – any internal structures (possibly including intentional
voids) are discarded [Andújar et al. 2002]. Due to the discretization procedure, as
a side effect high frequency detail is suppressed, removing also geometrical and
topological noise. This behavior is further strengthened by He et al. [1996] by
explicitly applying a low-pass filter.

When a polygon mesh, however, contains significant holes and gaps additional
measures need to be taken in order to plausibly assign signs. A variety of techniques
for sign assignments has been proposed for such cases. They are presented in the
following sections.

5.2.2 Input with Known Orientation. Probably the most common source of
holes in polygon models is missing information in scans of real-world objects (due
to occlusions, etc.). Hence many global mesh repair methods with hole-filling ca-
pabilities are tailored to the completion of incomplete scans and the merging of
range images. Due to the very nature of the acquisition process, the orientation of
the polygons is known. This is often exploited by the methods as valuable initial
information for the sign assignment process.

In an early work, Curless and Levoy [1996] exploit line-of-sight information of
the scanning process to classify voxels as either “definitely outside” or “possibly
inside”. This conservative classification closes all holes but leads to implausible
excess geometry in larger regions of missing information. Furukawa et al. [2007]
employ an additional heuristic and furthermore exploit “line-of-light” information
for improvement.

In order to achieve more plausible hole filling behavior Davis et al. [2002] pro-
pose a diffusion process. The input is converted to a signed distance field in the
vicinity of the surface and this field is iteratively diffused away from the initial sur-
face, effectively closing gaps and holes up to a given width. Guo et al. [2006] and
Masuda [2004] describe variants of this approach with different diffusion behavior,
specifically suited for non-smooth features.

These methods iteratively shrink holes and gaps. Their boundary sides grow
independently and merge arbitrarily. During further iterations they are then im-
plicitly smoothed out. Other methods consider a hole region globally and might
thus be able to obtain more plausible results. Sagawa and Ikeuchi [2003; 2008]
initially classify voxels as inside or outside depending on the input’s normals. Then
voxels along the interfaces in hole regions are iteratively reclassified so as to lo-
cally minimize the interface area. Shen et al. [2004] describe an implicit surface
construction based on a moving least squares interpolation of the input polygon
mesh. Holes and gaps up to a given width are globally bridged. Since evaluation of
the implicit function is expensive, a hierarchical evaluation and caching scheme is
proposed. Verdera et al. [2003] apply partial differential equations borrowed from
image inpainting approaches to hole regions in order to obtain smooth fillings. Un-
fortunately, setting up the necessary boundary conditions can be quite involved for
non-simple hole and gap constellations.

5.2.3 Arbitrary Input. Ju [2004] describes a method to patch holes in a vox-
elized version of an input mesh. The output is guaranteed to be a closed mesh, but
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due to the explicit tracing of hole boundary loops for filling, gaps whose boundary
does not form a closed loop are unlikely to get bridged. Furthermore, notice that so
far we were mainly concerned with missing information in form of holes and gaps.
However, models can as well contain excess geometry that needs to be discarded
to obtain a proper manifold. For instance a model might have been constructed
by simply putting several models together – resulting in double walls or interpene-
trations. These internal structures and non-manifold configurations might result in
spurious geometry and can disturb the reconstruction, e.g. when the popular dual
contouring method is applied the output could become a non-manifold regular set
[Mäntylä 1988].

One possibility to deal with internal structures as well as non-manifold configu-
rations is to simply disregard them by focusing only on the outer hull of the object.
Nooruddin and Turk [2003] do this by considering all voxels between the first and
the last intersections of numerous rays with the input as inside. In case of holes
and gaps this strategy of course leads to misclassifications. Therefore they perform
this ray-stabbing for several ray directions. This leads to plausible classifications
except for regions very close to holes and gaps where the resulting geometry can be
rather unintuitive.

Bischoff et al. [2005] also focus on the outer hull but handle holes and gaps using
morphological closing operations applied to the voxelized input. The outer hull
can afterwards be found by flood-filling the outside. Computational efficiency is
achieved by utilizing an adaptive octree-based voxelization scheme in conjunction
with hole and gap boundary detectors to spatially restrict morphology. Discrete
membrane shrinking can also be employed to obtain the outer hull [Hétroy et al.
2011]. In this work, however, the morphological operators are employed globally,
altering the surface also in concave intact regions. Hornung and Kobbelt [2006] also
(roughly) determine the outer region by morphological operations and flood-filling,
but the actual surface is then found by a global graph-cut approach resulting in
minimal-area hole filling patches. This approach is especially useful when dealing
with uncertain data, e.g. noise-ridden input or imperfectly registered partial scans.

These methods, of course, remove not only redundant internal geometry but also
voids that might be intentional. Methods based on parity counting [Nooruddin and
Turk 2003; Spillmann et al. 2006] are able to correctly preserve internal voids – but
they only lead to reasonable results if all internal structures are intentional.

The approach presented by Murali and Funkhouser [1997] is quite different from
all others presented in this section. First of all, it does not affect the original
geometry in intact mesh regions (however, the tessellation is altered). This is
achieved by employing a volumetric space partitioning into arbitrary polyhedral
cells aligned with the input polygons (using a BSP-tree) instead of regular voxels.
Then, it also is able to meaningfully deal with input with internal structures without
just discarding them or requiring that they form only consistent voids. This is
achieved by, in a global optimization process, establishing a sign assignment for
the volume cells such that the resulting output (the interface between positive and
negative cells) conforms with the input as well as possible. The geometry of the
hole filling patches is, however, highly dependent on the structure of the employed
BSP-tree and can be very unpleasing in cases of large holes that are to be filled.
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6. DISCUSSION AND OPEN PROBLEMS

After the overview of defects and algorithms presented in this survey, it is evident
that some repair tasks are significantly more challenging than others. While, e.g.,
the problems of converting a regular set to a manifold configuration or consistently
orienting faces can be easily formalized and solved, providing robust and intelligent
algorithms for, e.g., hole filling, gap closing, and intersection removal requires a
non-trivial interpretation of the problem and an elaborate case-by-case study. Es-
pecially for these difficult defect types existing methods, despite their vast number,
leave room for future investigation of the underlying problem, possibly from novel
perspectives following different paradigms. The research directions we in particular
deem important and worthwhile following are outlined in this section.

6.1 Guaranteeing and Global, yet Minimally Invasive

For the difficult tasks, most of the existing local approaches are characterized by
a lack of guarantees and possible new flaws introduced by the repairing itself. On
the other hand, the field of global strategies provides much more robust algorithms
with output of guaranteed correctness – at the cost of impairing also the intact
mesh parts due to global conversions and remeshing. This rule of thumb, however,
has noticeable exceptions such as [Podolak and Rusinkiewicz 2005] and [Murali and
Funkhouser 1997] which are able to guarantee manifold output while (at least geo-
metrically) leaving the intact parts unchanged. This comes with limitations, e.g. the
input is required to be oriented consistently and free of degeneracies, singularities
and self-intersections [Podolak and Rusinkiewicz 2005], or the patches filling holes
are shaped rather arbitrarily and robust implementation is involved [Murali and
Funkhouser 1997]. Nevertheless, these two works show that it is possible to devise
repairing algorithms that can guarantee a successful processing while modifying
the input only where strictly necessary. In this context it is also worth mentioning
hybrid algorithms (e.g. [Bischoff and Kobbelt 2005]) that employ a discrete voxel
structure (like most global approaches) to easily achieve robustness and guaran-
tees but perform the conversion and reconstruction only locally where defects exist.
Since guarantees are highly desirable and a global remeshing implies several unde-
sirable disadvantages for various application scenarios, we believe that this field of
methods that can guarantee defect-free output while impairing the input as little
as possible is an important area for further research.

6.2 High-Level Interaction incorporating Meta-Knowledge

No matter how robust, accurate and intelligent these automatic methods will be-
come, missing or excess geometry always implies ill-posedness of the underlying
repair problem that then bears several ambiguities: holes can be filled by patches
with different geometry, multiple holes be filled and connected by patches of dif-
ferent topology, self-intersections be removed in one or the other way, and so on.
Although a fully automatic repairing of mesh models is highly desirable, this goal
is thus hard to achieve – at least if by “repairing” we mean more than just the
resolution of all the abovementioned defects and flaws in an arbitrary way.

All the automatic repair methods presented in the previous section use some
heuristics, tie-breaking rules, random decisions, or some restricted problem spec-
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ification to disambiguate these cases. While this might be acceptable in some
applications, in others the repaired model has to adhere to some higher-level se-
mantics to be acceptable. These can be hard to formalize and therefore hard to
model and integrate into a specialized repairing algorithm, so that in such cases
today the most realistic approach to solve these problems is to incorporate a hu-
man observer, which has qualified knowledge and understanding of the underlying
semantics and requirements, into the repairing process by allowing to interactively
resolve the ambiguities that arise. This is particularly true when a method is to be
designed to cope with a wide spectrum of types of models. Of course, on one ex-
treme, if the algorithm can assume that the input model belongs to a specific class
that can be clearly defined, then one may justly expect that the repairing proceeds
automatically and successfully in any case. In practice, however, often flexibility
is desired and repairing algorithms are expected to deal with wider spectra of in-
put models. Therefore, we believe that it is worth designing new algorithms which
are as automatic as possible, but also incorporate interaction metaphors to allow
intervention where disambiguation is necessary.

First steps in this direction have been undertaken in the past. Morvan and
Fadel [1996], Barequet et al. [1998], and Attene and Falcidieno [2006] describe
model repair systems incorporating several of the surveyed repair techniques that
allow the user to explicitly select boundaries to be connected, intersections to be
resolved, etc., so as to resolve the inherent ambiguities by exploiting the user’s
meta-knowledge of the object under consideration. This process is partly supported
by error visualization and automatic zooming techniques. Kobbelt and Botsch
[2003] describe an approach providing the user with the possibility to manually
define elaborate blends between smooth surfaces as well as surface features to be
reconstructed. In these methods, the interaction happens on a rather low level:
the user is required to inspect individual defects, possibly deal with the selection
of individual edges or vertices, and so on. This might lead to a rather tedious and
costly repair process – especially when large models containing millions of faces and
thousands of small defects and flaws are dealt with.

Interaction on a somewhat higher level is employed, e.g., in the template-based
mesh completion method of Kraevoy and Sheffer [2005] where the user specifies
some correspondences between (part of) the incomplete input mesh and (some part
of) a template model, or in Hétroy et al. [2011] where the user is presented with
several morphologically altered variants of the input differing topologically to make
choices.

In the field of surface reconstruction from point clouds, Sharf at el. [2007b] pre-
sented an interesting approach that analyzes the local topological stability of the
reconstruction and prompts the user to make a qualified decision in unstable regions.
This is supported by presenting the region of interest in an optimally perceivable
way and allowing the user to provide input very easily in form of simple “scribbling”
on a 2D plane. The extension and incorporation of such or similar analysis and
visualization techniques in conjunction with intuitive high-level selection and modi-
fication metaphors into mesh repair approaches could significantly ease the process
of turning raw models into, not only syntactically correct, but also semantically
valid and acceptable output.
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6.3 Vertical Integration to Repair Workflows

Another important direction for future research concerns the creation of accurate
repairing workflows for specific scenarios. If there is the need to keep high accuracy
in intact regions, one will usually prefer to rely on local repair approaches. Most
of these methods, however, are tailored to fix one specific type of defect, usually
require the input to satisfy several requirements, and often produce output with
potential new problems. Thus, using several algorithms in sequence to produce a
repairing workflow may not be as easy as expected because there might be multiple
compatibility gaps between the output produced by one algorithm and the input
of its successor in the pipeline. Interactive repair systems [Barequet et al. 1998;
Attene and Falcidieno 2006] face this verticalization or serialization problem by
basically letting the user choose the order of processing, possibly implying several
iterations until finally a model is obtained that fulfills the desired quality criteria.
For the particular case of repairing raw digitized meshes this problem has been
studied in [Attene 2010], where the pipeline may have some “loops” to account for
more attempts when the output quality of one of the algorithms is not sufficient
for its successor. We believe that the workflow-based analysis is worth further
investigation to account for the many other scenarios that may require, today or in
the future, a non-trivial mesh repairing process.

7. AVAILABLE REPAIR TOOLS

Several mesh repair tools implementing one or multiple of the surveyed methods
are freely available – some in open-source, some in closed-source form. To ensure
up-to-dateness we provide information and references to these software tools on the
accompanying website http://www.meshrepair.org.
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