
ReMESH: An Interactive Environment to Edit and Repair Triangle Meshes

Marco Attene and Bianca Falcidieno
IMATI CNR, Dept. of Genova, Via De Marini, 6 – Genova – Italy

{attene, falcidieno}@ge.imati.cnr.it

Abstract
Polygonal meshes obtained from acquisition of real-world
objects may easily exhibit topological or geometrical
defects, which often prevent subsequent processing and
analysis to provide satisfactory results.
This paper describes the foundations of ReMESH, a user-
friendly graphical tool which incorporates several mesh-
repairing features, and allows to perform a kind of low-
level editing which is often missing in most existing
software packages. We show how state-of-the-art
techniques have been adapted and extended to form an
intuitive and integrated environment, and introduce some
optimizations and novel ideas that make ReMESH
particularly efficient. The main application in which the
tool proves to be extremely useful is the post-processing of
scanned surface models. In this context, ReMESH
represents a valid support for the production of certified
quality meshes.

1. Introduction
Triangle meshes are becoming a de-facto standard in most
application areas, mostly due to their simplicity and to the
increasing support of hardware producers. In many cases
the process that produces the mesh is generic, and does
not take into account particular context-dependent
requirements. On the other hand, however, systems that
use these models are designed to work on meshes with
particular characteristics and, if these are not met,
software tools are likely to fail or produce unsatisfactory
results. The process of adapting the raw data to a specific
application context is usually referred to as polygon mesh
post-processing [1].
As an example, if the targeted application of a huge mesh
is its inspection at interactive speed, we may count on
efficient simplification algorithms that reduce the mesh
complexity down to acceptable limits [12][16]. While
simplification is included in most mesh editing systems,
however, several other post-processing methods are not
yet diffused enough, though they are extremely useful.
When dealing with huge scanned models, for example,
interesting post-processing pipelines might include a
procedure to turn a generic surface mesh into a manifold
and oriented triangulation, or a method to remove
degenerate or overlapping faces; in both the cases, one
may want to introduce as less distortion as possible and
only where strictly necessary. Methods exist in the
literature, but each of tehm tackles one particular aspect of
the problem and there is a lack of tools that implement and

integrate repairing algorithms in an intuitive and flexible
framework.

Figure 1: The graphical interface of ReMESH 1.1

With ReMESH (Figure 1), we propose a user-friendly
environment for this kind of mesh post-processing.
Besides a number of automatic procedures that fix typical
defects of scanned models, ReMESH provides interactive
tools to let the user have a complete control on the
geometry and the connectivity of the mesh. As an
example, it gives the possibility to swap an edge by
simply mouse-clicking on it, or to automatically find and
zoom on degenerate elements so that the user can
interactively modify the local geometry and connectivity,
again, through simple mouse clicks and drags. For
completeness, however, ReMESH also provides a
selection engine, and several high-level operations such as
simplification, refinement, subdivision, and many others.
Summarizing, ReMESH is a triangle mesh editor that can
be used for several sorts of processing, but its very
distinguishing characteristic is the complete and flexible
set of tools provided to repair scanned models with their
typical defects. An exhaustive description of all
ReMESH’s features would bring us far beyond the scope
of this paper (see [3] and [4] for a complete overview), so
here we concentrate the focus on its repairing and low-
level editing capabilities.

2. Terminology
When developing ReMESH, we took particular care to
maintain a neat separation between connectivity and
geometry. For this reason we make use of some notation
adapted from [19], and denote a triangle mesh as a pair
(P,K), where P is a set of N point positions pi = (xi,yi, zi) œ

R3 with 1 § i § N, and K is an abstract simplicial complex
which contains all the topological information. The
complex K is a set of subsets of {1, ..., N}. These subsets
are called simplices and come in 3 types: vertices v = {i},
edges e ={i,j}, and triangles t ={i,j,k}, so that any non-
empty subset of a simplex of K is again a simplex of K,
e.g., if a triangle is present so are its edges and vertices.
The abstract simplicial complex K describes a topology
[22], or connectivity, on P. We refer to P as to the
geometry of the triangle mesh M=(P, K), while we call
connectivity, or topology, of M the connectivity defined
on P through K. We say that M is combinatorially
manifold iff K is a combinatorial manifold [10]. In its turn,
K is a combinatorial manifold iff all its vertices are
manifold, and a vertex of K is manifold if its
neighborhood is homeomorphic to a disk in the topology
of K.
A simplex σ of cardinality k+1 is also called a k-simplex.
For each k-simplex σ we define a function j:

[] Ν→Ν⊂k,0:ϕ s.t. .
[]
U

ki

i
,0

)(
∈

= ϕσ

Now, for each k-simplex σ in K, let us consider the subset
of R3 formed by the points x that can be expressed as the
convex combination of the vertex positions of σ:

∑
=

=
k

i
ii plx

0
)(ϕ , with 0,1

0
≥=∑

=
i

k

i
i ll

We refer to the union of all such subsets as to the
geometric realization S Õ R3 of the triangle mesh
M=(P,K). Thus, the geometric realization is a set of points
of R3 for which an Euclidean topology exists, and we say
that S is manifold iff the neighborhood of each point in S
is homeomorphic to a disk. Throughout the reminder of
this paper we say that M is geometrically manifold, or
manifold in the Euclidean sense, if S is manifold with
respect to the Euclidean topology.
Note that a triangle mesh may be manifold in the
combinatorial sense and not in the Euclidean one, for
example when the mesh self-intersects. Also, a
geometrically manifold mesh may be not combinatorially
manifold. To obtain such a model, for example, start from
a triangle mesh which is both combinatorially and
geometrically manifold, pick an edge e ={i,j}, add a new
triangle t ={i,j,k} and set pk=pj.
If we relax the requirement of homeomorphism with a
disk to the weaker condition of homeomorphism with a
disk or with a half-disk, we say that M is manifold with
boundary, which holds both in the Euclidean and in the
combinatorial sense.
We define an orientation of an edge as an ordering of its
two vertices. Furthermore, we call an orientation of a
triangle an equivalence class of ordering of its vertices
where (v1,v2,v3) ∼ (vψ(1),vψ(2),vψ(3)) are equivalent
orderings if the parity of the permutation ψ is even. Two
triangles sharing an edge e are consistently oriented if they

induce different orientations on e. A triangle mesh is
orientable iff all its triangles can be oriented consistently.

3. Previous Work
3.1 Fixing the connectivity
In many application contexts the input mesh is required to
be manifold and orientable, while several commonly used
graphic formats (VRML, STL, OFF, IV, …) may
represent sets of polygons which do not necessarily
constitute manifold and orientable surfaces.
In [26] a method is proposed to convert non-manifold
regular sets to manifold surface meshes by identifying
non-manifold edges (i.e., edges having more than two
incident faces); each such edge is replicated a number of
times sufficient to assign at most two incident faces to
each copy. In a second step, non-manifold vertices are
also identified and duplicated properly. In a similar
setting, [13] identifies non-manifold edges and cuts the
surface along such edges, that is, each non-manifold edge
having k incident faces is turned into k boundary edges
having 1 incident face each. In a second step, the user
may choose whether to pinch or to snap such boundary
edges; in the former case, each boundary loop is simply
zipped, or closed, while in the latter case pairs of
neighboring boundaries are merged together.

3.2. Fixing the geometry
As far as the geometry is concerned, two main approaches
have been investigated in the literature. A first class of
methods is based on the construction of an intermediate
volumetric representation, from which the resulting
surface is completely re-built. Methods of this kind fix
both the geometry and the connectivity, and include [23]
and [24], in which a uniform voxelization of the space is
constructed and contoured [21] to extract a clean manifold
surface. In [17], an adaptive space subdivision (i.e., an
octree) is used, and a dual contouring approach [18]
makes the method able to reconstruct sharp features.
Another important class of algorithms is based on a direct
processing of the input mesh, without the need of
intermediate representations. In [28], mesh zippering was
introduced as a tool for merging partially overlapping
range images. Tiny holes and surface cracks may be
removed through patching triangles, as described in
[6][8]. If bigger holes need to be fairly filled, the method
introduced in [20] is able to produce patches in which
both the sampling density and the normal field of the
surrounding surface is reproduced. If the surface has small
unwanted handles or tunnels (sometimes referred to as
topological noise), these can be located and removed
following the approach described in [15]. By inserting
vertices and collapsing edges properly, [9] proposes an
automatic procedure to remove degenerate triangles.
Typically, volume-based methods provide certified
quality results, while direct methods may fail for many
reasons. Filling non-planar holes with non self-

intersecting triangles, for example, is not always possible
and determining a valid triangulation, if any, is an NP-
complete problem [7] and is tackled through heuristics.
On the other hand, volumetric methods are more
demanding in terms of computational resources, and
introduce an error everywhere regardless of the local mesh
quality. In most situations an input mesh has few local
defects, while most of the triangles are correctly
connected to each other. For this reason, we chose to
implement a direct method in ReMESH; If the repairing
cannot be completed automatically, a set of interactive
tools are provided to cut, merge, remove and fill faulty
regions clearly displayed by the software. In any case,
however, the user may run a volumetric repairing based
on the Marching Intersections approach [24].

4. ReMESH
ReMESH provides two sets of repairing operations.
Operations of the first set are mandatory, are performed
automatically, and serve to convert the set of input
polygons into a set of manifold and oriented triangle
meshes that can be properly described by ReMESH’s
internal data structure. The second set of operations has
been designed to make the mesh more robust and
utilizable in a wider range of applications.

4.1. Mandatory Repairing
While loading, an internal data structure [3] is initialized.
Such a structure has been optimized to efficiently manage
manifold and oriented meshes, possibly with boundary.
Most graphic formats supported by ReMESH (VRML,
OFF and IV), however, may represent non-manifold
and/or non-orientable sets of polygons. In this case the
loader runs the algorithm described in [13]. If the resulting
manifold surface is not oriented, however, ReMESH
assigns an orientation to one triangle for each connected
component, and propagates the orientation to neighboring
triangles; once all of the triangles have been visited, the
mesh is cut along edges having non-consistently oriented
incident triangles. Further operations include the
triangulation of non-triangular faces, the removal of
isolated vertices, and the duplication of non-manifold
vertices.
All the operations described are performed automatically
by the loader, so that the user always works on manifold
and oriented meshes.

4.2. Optional Repairing
Once the data structure is properly filled with a mesh
which is manifold in the combinatorial sense and oriented,
various sorts of improvements may be still applied.
Among its features, ReMESH provides automatic and
user-assisted functionalities to remove defects that would
cause subsequent processing to fail.

Removal of small and isolated components
In many cases a 3D application expects the input mesh to
be made of a single connected component; on the other

hand, however, several mesh generation techniques often
create tiny disconnected patches [21][24] near a main
surface, and removing all but the biggest connected
component is a functionality of clear interest. In
ReMESH, such a functionality has been implemented by
simply counting the number of triangles forming each
component, that is, the biggest component is the one with
the highest number of triangles.

Hole Filling
Also, many applications require the input to be watertight
(i.e., without surface holes). Filling holes with ReMESH
is a very flexible and controllable operation. It is possible
to triangulate a single hole by clicking on one of its
boundary edges, or to fill all the holes without user-
assistance. In both the cases, the hole(s) may be simply
triangulated [6] or it(they) may be patched by inserting
new vertices so as to reproduce the sampling density and
the normal field of the neighboring surface [20]. In this
latter case, we have analyzed the method proposed by
Liepa in [20] and adapted it for a more general case.
Essentially, Liepa’s hole-filling procedure is subdivided
in three steps: triangulation, refinement and fairing. In the
first step the hole is triangulated as suggested in [6]; In the
second step, new vertices are placed within the newly
inserted triangles to produce the desired vertex density.
Specifically, each new triangle which is too big wrt the
neighboring faces is subdivided in three sub-triangles by
inserting a new vertex at the barycenter. At the end, edges
are iteratively swapped so as to verify in-sphere tests in a
Delaunay-like manner. Finally, in the third step, the new
vertices are moved to positions that minimize an
appropriate functional and make the patch’s normal field
fairly continuous with respect to the neighboring surface.
In the context of repairing big scanned models, we found
it necessary to perform some little improvements and
extensions to the original method.
First, we have observed that when the hole is big with
respect to the average length of its bounding edges, the
initial triangulation is inevitably made of some long and
thin triangles, and the Delaunay-like optimization does
not always converge to a satisfactory result due to limited
robustness when computing circum-spheres. In these
cases one might use exact arithmetics [27], but for big
models this would lead to unacceptably long execution
times. We have found that minimizing the length of
internal edges provides excellent results, and represents a
much faster and robust procedure. Thus, in the iterative
optimization, we swap an edge only if its length after the
swap decreses.
Our main innovation, however, consists of a very simple
but effective approach to merge together pairs of
disconnected boundaries (Figure 2). Given two boundary
loops, b1 and b2, the user clicks on a pair of vertices
belonging to the two boundaries. After connecting them
through a new edge that we call the gate, at each step the
algorithm attaches a new triangle t to the gate and to an

edge of one of the two boundaries, and the newly created
edge becomes the new gate. This operation is repeated
until all the edges belonging to both b1 and b2 become
internal. For each new such triangle t, we choose its third
vertex (i.e., the one which is opposite to the gate) either on
b1 or on b2, and such a choice is driven by the attempt to
complete the two boundaries roughly at the same speed.
More formally, let E1 and E2 be the sets of edges
belonging to b1 and b2 respectively, and let li be the total
length of edges in Ei. Also, we make use of the set Bi =
{eœEi : e is on boundary} so that, initially, Bi=Ei. Let ni be
the total length of edges in Bi. At each step, the third
vertex of the new triangle is chosen so as to minimize the
quantity c = |n1l2-n2l1|.

Figure 2: Left: boundaries connected as suggested in

[20]. Right: connected using our method.

The other two steps of our modified Liepa’s hole-filling
do not require the patching triangulation to be simply
connected, so we just use them on our cylindircal patch.
Our minimization of c makes the algorithm proceed at
about the same speed on both the boundary loops, and
provides much more satisfactory results than simply
adding two triangles to change the topology and then
using the triangulation algorithm (see Figure 2), as
suggested in [20].

Removal of tiny handles
Another typical source of malfunctions for many 3D
applications is the presence of unwanted handles or
tunnels. Mostly often, such topological defects are due to
the mesh generation process, and do not correspond to
actual topological entities in the original 3D data. In [15]
such defects have been conceptualized under the term
topological noise, and in the same work the authors
propose a procedure to identify and remove them. In
ReMESH, we implemented an automatic procedure to
identify and select tiny handles. First, the user clicks on
the mesh and, by dragging the mouse, draws a semi-
transparent sphere on it. Then, all the handles that fit
within the sphere are automatically selected for further
processing. The selected triangles, for example, may be
removed and the resulting holes patched, with the result of
reducing the genus of the mesh.
The algorithm implemented in ReMESH is based on a
depth-first, triangle-based visit of the mesh, as the one
used in [25]. For the sake of explanation, we imagine to
remove one triangle at a time, starting from a seed one, in
a depth-first manner. In some cases, for example when
wrapping around a cylinder, expanding the hole requires
its boundary to split. In particular, it happens that the next

triangle to be removed has only one boundary edge but all
its three vertices on the boundary. In this case, we use the
notation introduced in [25] and label such a triangle with
an S symbol (see Figure 3). Let e1 and e2 be the two non-
boundary edges of such a triangle; after removing it, the
removal proceeds from the only triangle attached to e1,
while e2 is put onto a stack for future processing. If there
are no handles, the surface between e1 and e2 is
disconnected, so we remove the component containing e1,
and then the other one separately. If, when removing
triangles from the first component we reach e2, we went
across a handle. In this case, we tag the S triangle with a
particular symbol S’. Actually, there is no need to remove
triangles, while it is sufficient to mark them as visited.

e1 e2

Init 1 n

n+1

Figure 3: Example of depth-first visit starting from a

seed face and tagging of an S triangle.

Typically, topological noise is present on meshes obtained
from laser scanner data [15]. We have experienced that
for such class of meshes, in which the variation in edge
length is not excessive, S’ triangles are geometrically
close to actual handles. Through this observation, we can
locate most of the tiny handles by simply analyzing the
topology of a spherical neighborhood (whose radius was
interactively selected by the user) of each such triangle.
Using this procedure, ReMESH locates tiny handles much
more quickly than the method proposed in [15]. As an
example, we run ReMESH on an old P3 450MHz, and we
could locate 98 of the 104 handles of the famous Buddah
model (1087716 faces) in about 32 seconds, which is
twenty times less than what reported in [15] for the same
mesh on a faster PC (the comparison is fair because the
time-consuming part of [15] is the location, and not the
simplification of the handles).

Degenerate triangles
The problem of robustness of geometric algorithms has
been receiving a lot of attention for more than 15 years
[14][11], and it remains an important area of research.
When designing a geometric algorithm, in fact, a
researcher uses the theory of real numbers and their exact
arithmetic. At implementation time, however, real
numbers must be approximated with finite precision
representations and the error introduced cannot always be
neglected, as it may cause a wrong branching in the
process pipeline and, as a consequence, it may cause a

topological inconsistence or a failure of the algorithm.
Typically, such problems are originated from degenerate
or nearly degenerate triangles having extreme angles, also
referred to as skinny triangles [9].
In order to produce robust meshes, we chose to implement
a strategy based on the Epsilon Geometry introduced in
[14]. ReMESH provides the possibility to remove all the
triangles with angles smaller than ε or bigger than π-ε,
where ε is a customizable threshold angle. The removal is
carried out through swapping and contraction of edges,
inspired from ideas of [9]. Specifically, triangles having a
nearly flat angle are treated by swapping the edge opposite
to such angle, while triangles having a nearly null angle
are removed by collapsing the edge opposite to such angle
to its mid-point (checks are performed in this order). The
default value of ε is arcsin(10-5); by experiment, this value
proved to be a good compromise between precision and
robustness.
Even if the strategy implemented does not guarantee
robustness in all the cases, we have found that it avoids
nearly all of the most common problems when dealing
with non robust applications. All the check and repairing
tasks can be performed by the user after selecting a new
value for ε. This can be useful when the model being
edited must become the input for a less robust system.

Sharp feature recovery
During a 3D acquisition process, it is extremely hard to
align the scanning pattern with sharp edges and corners of
the object being digitized. As a result, in the digital model
such sharp features are replaced by irregular chamfer
triangles. ReMESH provides an implementation of the
EdgeSharpener algorithm that, after an identification of
chamfer triangles, inserts new vertices on them and
reconstructs sharp edges and corners based on an
extrapolation of neighboring smooth regions [5] (see
Figure 4).

Figure 4: From left to right: original; smooth regions

detected; sharpened model.

4.3. Manual repairing by low-level editing
In some cases, all the automatic functionalities provided
by ReMESH may fail to remove some defects. This may
happen, for example, when too many degenerate triangles
are adjacent to form surface spikes (see Figure 5). In these
cases, ReMESH provides a button that looks for
degeneracies; the last problem detected, if any, is
automatically visualized by properly pointing the camera,
and the tool provides a number of interactive operations
that let the user choose what to do in each particular
situation. By simply clicking and dragging the mouse, it is

possible to swap edges, or to remove one triangle at a
time, or to select a region and re-triangulate it using a
Delaunay-like method, or to locally run some iterations of
Laplacian smoothing, and so on.

Figure 5: Automatic location of a spike incorporating

degenerate triangles (top row). Selected region
(bottom-left) and removal (bottom-right).

Selections
In ReMESH it is possible to define regions of interest, or
selections. A selection is a set of mesh triangles on which
further operations have their effect. By clicking on a point
of the surface, the user selects the center of a sphere
whose radius is interactively controlled by dragging the
mouse without releasing the button. When the button is
released, ReMESH considers all the triangles entirely
contained in the sphere. These triangles may constitute
several disconnected components; the component
containing the center of the sphere is selected and
highlighted. To refine a selection, the status of each
triangle may be toggled by clicking on it, that is, a
selected triangle becomes unselected and vice-versa. Also,
it is possible to grow, shrink and invert the current
selection, to add another selection by holding the shift
key, to remove or intersect selections and so on.

5. Conclusions
In this paper we have introduced the foundations of
ReMESH, a graphical tool integrating most of the existing
techniques developed so far to repair polygonal meshes.
Besides presenting the toolbox, we discussed some
improvements and extensions to state-of-the-art methods
which have been implemented in ReMESH.
In version 1.1, ReMESH has been extensively tested on
several scanned models ranging from thousands to
millions of faces, and provided extremely good results in
all the cases.
ReMESH was used to post-process raw geometry and
produce several high-quality models for AIM@SHAPE’s
Shape Repository [2]. The main goal of such repository is

to become a reference point for persons looking for
“certified” shapes, in which the plain geometry is
endowed with metadata specifying, among the others,
interesting characteristics such as manifoldness,
orientation, watertightness, genus, and so on.
The model shown in Figure 1 was digitized through a
Minolta Vivid 910 laser scanner. After aligning and
merging the range images, the resulting mesh was not
manifold and not orientable, had numerous degeneracies,
tiny disconnected components and plenty of surface holes
due to visibility occlusions. All these problems have been
fixed through ReMESH, so that the model could become a
proper input for further processing. Such a fixed model is
made of more than one million faces, and became the
representative certified mesh of AIM@SHAPE’s Shape
Repository.

Acknowledgements
This work is partially supported by the EU Project
AIM@SHAPE (Contract # 506766). Thanks are due to Dr.
Michela Spagnuolo for her encouragement in writing the paper,
to all the members of the Shape Modeling Group of the IMATI-
GE/CNR, to the authors of the papers that inspired this work,
and to the people that, through discussions and suggestions,
made it possible to develop ReMESH. The models used in the
illustrations are courtesy of AIM@SHAPE (Figure 1), H. Hoppe
(Figure 4) and Stanford Univ. (Figure 5).

References
[1] Adamson, A., Alexa, M. and Attene, M. 2004. Post-

Processing. In AIM@SHAPE’s survey on Acquisition and
Reconstruction (Technical Report), 146-152.

[2] AIM@SHAPE, FP6 IST NoE 506766. Shape Repository
v2.0. http://shapes.aim-at-shape.net/

[3] Attene, M. 2004. ReMESH: An Interactive and User-
friendly Environment for Remeshing Surface
Triangulations. IMATI-GE/CNR Technical Report
06/2004.

[4] Attene, M. 2005. ReMESH 1.1 - User Manual.
http://www.ima.ge.cnr.it/ima/personal/attene/PersonalPage/
Remesh/1.1/manual.pdf

[5] Attene, M., Falcidieno, B., Rossignac, J. and Spagnuolo, M.
2003. Edge-Sharpener: Recovering sharp features in
triangulations of non-adaptively re-meshed surfaces. In
Proceedings of the 1st Eurographics Symposium on
Geometry Processing, 63-72.

[6] Barequet, G. and Sharir, M. 1995. Filling Gaps in the
Boundary of a Polyhedron. Computer-Aided Geometric
Design, 12, 2, 207-229.

[7] Barequet, G., Dickerson, M. and Eppstein, D. 1998. On
triangulating three-dimensional polygons. Computational
Geometry 10, 155-170.

[8] Borodin, P., Novotni, M. and Klein, R. 2002. Progressive
Gap Closing for Mesh Repairing. Advances in Modeling,
Animation and Rendering, 201-213.

[9] Botsch, M. and Kobbelt, L. P. 2001. A Robust Procedure to
Eliminate Degenerate Faces from Triangle Meshes. In
Proceedings of Vision, Modeling and Visualization, 283-
290.

[10] De Floriani, L., Morando, F. and Puppo, E. 2003.
Representation of Non-manifold Objects through

Decomposition Into Nearly manifold parts. In Proceedings
of ACM Solid Modeling ’03, 304-309.

[11] Fortune, S. 1996. Robustness issues in geometric
algorithms. In Proceedings of the 1st Workshop on Applied
Computational Geometry (WACG '96), 9-14.

[12] Garland M. and Heckbert, P.S. 1997. Surface simplification
using quadric error metrics. In Proceedings of ACM
SIGGRAPH ‘97, 209-216.

[13] Guéziec, A., Taubin, G., Lazarus, F. and Horn, B. 2001.
Cutting and stitching: Converting sets of polygons to
manifold surfaces. IEEE Transactions on Visualization and
Computer Graphics, 7, 2, 136–151.

[14] Guibas, L., Salesin, D. and Stolfi. J. 1989. Epsilon
geometry: building robust algorithms from imprecise
computations. ACM Symposium on Computational
Geometry, 5, 208-217.

[15] Guskov, I. and Wood, Z. 2001. Topological noise removal.
In Proceedings of Graphics Interface ‘01, 19-26.

[16] Hoppe, H. 1997. View-dependent Refinement of
Progressive Meshes. In Proceedings of ACM SIGGRAPH
‘97, 189-198.

[17] Ju, T. 2004. Robust Repair of Polygonal Models. ACM
Transactions on Graphics, 23, 3 (Procs. of SIGGRAPH
2004), 888-895.

[18] Ju, T., Losasso, F., Schaefer, S. and Warren, J. 2002. Dual
Contouring of Hermite Data. ACM Transactions on
Graphics, 21, 3 (Proceedings of SIGGRAPH ’02), 339-346.

[19] Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L. and
Dobkin, D. 1998. MAPS: Multiresolution adaptive
parameterization of surfaces. In Proceedings of ACM
SIGGRAPH ‘98, 95-104.

[20] Liepa, P. 2003. Filling Holes in Meshes. In Proceedings of
the Eurographic Symposium on Geometry Processing, 200-
206.

[21] Lorensen, W. and Cline, H. 1987. Marching Cubes: a high
resolution 3D surface construction algorithm. In
Proceedings of ACM SIGGRAPH '87, 163-169.

[22] Munkres, J. R. 2000. Topology. Prentice Hall, New Jersey,
USA.

[23] Nooruddin, F. S. and Turk, G. 2003. Simplification and
Repair of Polygonal Models Using Volumetric Techniques.
IEEE Transactions on Visualization and Computer
Graphics, 9, 2, 191-205.

[24] Rocchini, C., Cignoni, P., Ganovelli, F., Montani, C., Pingi,
P. and Scopigno, R. 2001. Marching Intersections: an
efficient resampling algorithm for surface management. In
Proceedings of Shape Modeling International (SMI ’01),
296-305.

[25] Rossignac, J. 1999. Edgebreaker: Connectivity
compression for triangle meshes. IEEE Transactions on
Visualization and Computer Graphics, 5, 1, 47-61.

[26] Rossignac, J. and Cardoze, D. 1999. Matchmaker: Manifold
Breps for non-manifold r-sets. In Proceedings of the ACM
Symposium on Solid Modeling, 31-41.

[27] Shewchuk, J. R. 1997. Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates. Discrete
& Computational Geometry, 18, 305-363.

[28] Turk, G. and Levoy, M. 1994. Zippered polygon meshes
from range images. In Proceedings of ACM SIGGRAPH
‘94, 311–318.

