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Abstract
We focus on the class of “regular” models” defined by Várady et al. for reverse engineering purposes. Given
a 3D surfaceM represented through a dense set of points, we present a novel algorithm that convertsM to a
hierarchical representationHM. InHM, the surface is encoded through patches of various shape and size, which
form a hierarchical atlas. If M belongs to the class of regular models, then HM captures the most significant
features ofM at all the levels of detail. In this case, we show that HM can be exploited to interactively select
regions of interest onM and intuitively re-design the model. Furthermore,HM intrinsically encodes a hierarchy
of useful “segmentations” of M. We present a simple though efficient approach to extract and optimise such
segmentations, and we show how they can be used to approximate the input point sets through idealised manifold
meshes.

Categories and Subject Descriptors (according to ACM CCS): Hierarchical clustering, segmentation, shape primi-
tives, selection.

1. Introduction

In its earliest years, Computer Graphics was dominated by
synthetic shapes, either created by designers through proper
software tools or generated out of simulation of physical
phenomena. Recent advances in 3D acquisition technologies
have brought a gradual change in the way 3D models are
produced and handled. Today, precise digitised models are
extremely complex, and it is not rare to deal with objects
made of millions of elements (e.g., points, triangles, etc).
Such a complexity prompted the development of algorithms
to partition large models in smaller parts, which are more
manageable and significant.

Properly designed models can be easily modified by act-
ing on few and well-placed control points. Since these mod-
els are typically composed of patches that correspond to
structural features of the shape (e.g., planes, through holes,
etc), it is relatively easy to replace such features with others
and re-design the model. In contrast, even if digitised models
are extremely flexible and detailed, they are hardly modifi-
able without a proper segmentation that identifies their struc-
tural parts. Thus, segmentation has become a fundamen-
tal step for several application contexts, including Product
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Modelling, where segmented surfaces are computed for re-
verse engineering purposes [VMC97], and Computer Graph-
ics, where properly segmented shapes support modern mod-
elling paradigms [FKS∗04].

Several algorithms have been proposed to hierarchi-
cally segment 3D surface meshes [AFS06,AKM∗06,KT03],
and recently some work has been dedicated to volume
meshes [AMSF08]. Although point sets are widely used and
flexible surface representations, the computation of part hi-
erarchies out of point-sampled surfaces is still open to effi-
cient solutions. Therefore, this work tackles the problem of
hierarchically segmenting point sets in useful shape parts,
and strives to reduce the gap between a huge development
of mesh-based techniques and a relatively low attention on
multi-resolution decompositions of point sets. Note that the
lack of connectivity and the atomic definition of point sets
make the segmentation more complex than for simplicial
meshes. In fact, mesh segmentation algorithms rely on an
explicit surface connectivity [DKT05] and are often based
on the properties of discrete differential operators.

It is worth mentioning that the hierarchical segmentation
of point sets provides benefits for a plethora of applications.
In Computer Vision, it makes it possible to convert a raw
point cloud to a hierarchy of features for shape recogni-
tion [Mar82, PKKG03]. In Computer Graphics, a hierarchi-
cal organisation of the parts provides a support for the defi-
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nition of regions of interest of variable size, which are useful
for editing purposes such as deformation or copy-and-paste
modelling [AMSF08]. Furthermore, it provides a multi-scale
shape abstraction that can be used to match point-sampled
surfaces [DGG03].

Overview and contributions Building on previous re-
search results obtained for triangle meshes [AFS06], we
present a novel approach that employs a hierarchical cluster-
ing to efficiently and accurately construct a multi-resolution
representation of a point set. In our representation, the
model is encoded as a structured hierarchy of point-sampled
patches of various shapes and sizes. By construction, each
patch is fairly approximated through either a planar, a spher-
ical, a conical, a cylindrical or a toroidal surface. Start-
ing from such a representation, we easily compute a single-
resolution segmentation of the point set in which each seg-
ment is effectively idealised through one of the five geomet-
ric primitives employed. This choice makes our method an
efficient and hierarchical solution to the problem of recov-
ering the structure of piecewise algebraic models that are
described as assemblies of the aforementioned primitives.
According to [VMC97], we refer to these kinds of shapes
as to regular models.

With respect to existing approaches, and in particular
to [AFS06], this article introduces several innovations: to
perform the clustering, mesh connectivity is replaced by the
k-nearest neighbour graph, which is also used to evaluate the
differential properties that support the fitting stage. In order
to deal with uneven sampling densities and to improve the
fitting quality, we exploit the areas of properly computed
splats as weights associated to the points. Another innova-
tion is the selection of a broader set of primitives, which
makes it possible to obtain comprehensive hierarchical ab-
stractions of any regular model. Besides adapting the fit-
ting strategy for cylinders to better perform on point sets,
we introduce a new, robust, and efficient fitting of cones and
tori. A further original contribution is our algorithm to re-
fine cluster boundaries in segmentations extracted out of our
hierarchies.

We also show that our hierarchical representation is par-
ticularly useful for CAD feature selection. We believe that
the proposed selection mechanism may have a significant
impact in the usability of forthcoming CAD systems deal-
ing with reverse-engineered objects. Finally, note that recon-
structing a mesh is not always an easy task due to possible
missing data, noise, disconnected portions of the point set or
chamfered sharp edges; thus, computing a mesh to be seg-
mented may not be feasible. By assuming that the points are
sampled on a regular model, however, we show that an ide-
alised mesh can be robustly reconstructed starting from the
fitting primitives encoded in our hierarchy.

Paper structure The remainder of the article is organised
as follows: in Section 2, we briefly review previous work

on point-sampled surfaces and shape segmentation. Sec-
tion 3 introduces the hierarchical clustering applied to point-
sampled surfaces, discusses how to extract a segmentation
out of the resulting hierarchy, and how to refine it. Section 4
defines the geometric primitives that drive the clustering.
Details of the approach, along with experimental results and
comparisons, are discussed in Section 5, whereas Section 6
shows the main applications of the proposed approach. Fi-
nally, conclusions and future work are outlined in Section 7.

2. Theoretical background and related work

In the following, we briefly review previous work on point-
sampled surfaces (Section 2.1) and segmentation of 3D
shapes (Section 2.2). For more details on these topics, we
refer the reader to the state-of-the-art reports [AGP∗04,
GPA∗02] and [APP∗07, Sha06], respectively.

2.1. Point set surfaces: definition and differential
analysis

A point-based representation of a surface M is a finite
set P of points sampled on M. The surface M under-
lying P is commonly estimated using the moving least-
squares [ABCO∗01, AK04, Lev03] and the implicit [AA03]
approximations. Given a point set P := {pi}N

i=1, in the
k-nearest neighbour graph T of P each point pi ∈ P is
linked to its k nearest points inP , which constitute the neigh-
bourhood Npi := {p js}

k
s=1 of pi. For dense point sets, this

graph provides enough information to approximate the lo-
cal geometric and topological structure ofM without mesh-
ing the whole point set. The computation of T requires
O(N logN) time [AMN∗98].

Point set surfaces The MLS surface underlying P is de-
fined by minimising an energy function, which is the sum of
weighted squared distances of points in P to a plane [AK04,
Lev03]. Changing either the energy function or the normal
field provides variants of the MLS surface [AA03, GG07].
For instance, the RMLS variant [FCOAS03] preserves sharp
features ofM, which are commonly chamfered in standard
MLS surfaces. In this article, we only need to estimate the
normals at the points of the input set P . To this end, for each
point p, the un-oriented normal n(p) is defined as the unit
eigenvector related to the smallest eigenvalue of the 3×3
symmetric covariance matrix C defined as

C :=
N

∑
i=1

(pi−p)(pi−p)T
θ(‖p−pi‖2).

Here, θ is a decreasing weighting function, e.g. the Gaussian
map θ(t) := exp(−t2/h2), where h is the scale parameter.
For each point, the value h is either set as the distance of the
farthest of its k-nearest neighbours in P or kept constant by
computing the average of these values on P [DS05]. Since
the map θ rapidly decreases with the increase of the Eu-
clidean distance among points, we substitute the indices in
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the previous sums with those of the points ofP that belong to
the k-nearest neighbours of p. Neglecting the contributions
of the points that do not belong toNp makes the computation
of n(p) much faster at the cost of an acceptable approxima-
tion error. Finally, the normals at the pi’s are coherently ori-
ented by propagating the orientation of a seed normal along
arcs of the Riemannian graph of the point set [HDD∗94].

Principal curvatures and directions for point-sampled
surfaces Let πp be the tangent plane to P at p, n(p) the
corresponding normal vector, and e an arbitrary directional
vector contained in πp. Then, we consider the intersection
curve γ between the surfaceM underlying P and the plane
that is orthogonal to n(p)× e and interpolates p. The value
of the curvature of γ at p is called normal curvature of M
at p along the direction e and it is uniquely determined by e.
As e varies among all the directional vectors in πp, the prin-
cipal curvatures κ1, κ2 are defined as the maximum and min-
imum of the normal curvatures. In the following, the nota-
tion n refers to the normalised vector n := n/‖n‖2 of unit
length. According to [YQ07, LP05], the directional curva-
ture in pi along d := ei j, ei j := p j−pi, is defined as

κi j := 2
〈n(pi),p j−pi〉2
‖p j−pi‖2

2
, p j ∈Npi .

Let etan
i j be the normalised tangential part of ei j and etan⊥

i j its
orthogonal component; as done in [LP05], let wi j be a weight
associated with the direction ei j which depends on the local
sampling density. Integrating the directional curvatures, we
get an approximation Wi of the Weingarten map at pi; i.e.,

Wi := ∑
pi∈Np j

wi jκi jetan
i j

T
etan⊥

i j .

Then, the principal curvatures κ1, κ2 of P at pi are com-
puted as the eigenvalues of Wi. In Section 4.4, the principal
curvatures are used to identify the parameters that fully char-
acterise the toroidal primitives.

2.2. 3D Shape segmentation and structure recovery

3D segmentation techniques can be classified in two
main categories: surface-based and part-based ap-
proaches [APP∗07, Sha06]. A surface-based segmen-
tation is a decomposition of the input into a family
of patches that have a uniform behaviour with re-
spect to a specific surface property such as Gaus-
sian curvature [YGZS05, MPS∗03], approximating
primitives [CDST97, VMC97, AFS06, MPS∗04], flat-
ness [GWH01], geodesic distances [KT03, ZTS02]. Other
approaches employ spectral analysis [LZ04, YNBH06],
scale space clustering [BSRS04], scissoring [LLS∗05], and
topological properties [PSF04, ZMT05, ZH04]. In contrast,
part-based segmentation algorithms consider the input to
be a solid, and the extracted parts are characterised by
their volume [LJS97, LSA94, AMSF08]. Both surface and

Figure 1: Structural features encoded as clusters of points
along the paths connecting the root of the binary tree with
the leaves. Besides the point itself (red leaf), features of in-
creasing size are captured; e.g., the planar top of the bolt,
the bolt itself, the stiffener, and so on, up to the whole model.

part-based methods can be either direct or hierarchical.
In a direct method, a single segmentation is extracted
and possibly post-processed (e.g., through variational
optimization). Conversely, hierarchical approaches produce
multiple segmentations where segments at finer levels are
hierarchically nested in segments at coarser levels. In the
following, we review direct (Section 2.2.1) and hierarchical
segmentation algorithms (Section 2.2.2).

2.2.1. Regular models and direct segmentation

Since our work targets mostly regular models, the review
of previous work is mainly focused on this class of objects.
In [VMC97], regular model has been defined as a 3D shape
that can be described as an assembly of primitive surfaces,
which may be parts of planes, spheres, cylinders, cones, and
tori. Várady et al. also proposed a surface-based algorithm
to retrieve the constituting patches starting from a raw sur-
face mesh. After a first coarse segmentation based on the
identification of feature lines, their method classifies each
region as simple or multiple, depending on whether or not
the region can be effectively approximated by one of the
primitives. In the latter case, each region is analysed and
partitioned through dimensionality filtering on the Gaussian
sphere. Note that regular models must not be confused with
regular sets used for solid modelling applications.

In [SWK07], the segmentation is achieved by randomly
selecting minimal sets, which are defined as the smallest
number of points that define a pre-defined primitive, and
by computing those primitives that approximate most of the
points. The segmentation is robust to noise but the overall
framework requires several parameters to guide the identifi-
cation of the primitives. Furthermore, the randomness of the
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Figure 2: Main steps of the proposed approach. (a) Input point set P; (b) k-nearest neighbour graph of P; (c) initial partition
where each point is associated to its own singleton cluster. (d) Intermediate level of the clustering in which the point-sampled
patches successfully capture the structural parts of the object. (e) Final single cluster constituted by P .

point sampling might provide different results depending on
the thresholds used to define and minimise the score func-
tion, which measures the quality of a shape candidate.

In [VB04], first and second order surface properties guide
the direct segmentation of a point set into planes, spheres,
cylinders, and cones. After a first phase where a coarse
segmentation is computed, a variational approach is ap-
plied to optimize the boundaries of the features extracted in
the first phase. A variational optimization approach is also
used in [CSAD04] to approximate complex polygon meshes
with few planar patches; this method is based on the k−
means clustering, and it has been extended in [WK05] to
treat also spherical, cylindrical, and rollingball-like features.
The k-means clustering is exploited in [MFX∗07] too, where
neighboring points are grouped according to their reciprocal
Euclidean distances and the angular differences among the
normal directions.

2.2.2. Hierarchical segmentation

In [GWH01], a hierarchical clustering of triangulated sur-
faces in nearly planar patches was introduced. Arcs of the
dual graph of the mesh are iteratively collapsed, and the
order of such operations is determined by the planarity of
the corresponding clusters of triangles in the primal graph,
i.e. the input mesh. Similarly, in [ITY∗01] the clustering is
used to simplify the structure of CAD models, and the edge-
contraction order is driven by the area of the clusters, their
flatness, and the smoothness of their boundaries.

In [AFS06], the work of [GWH01] was extended to fit
spherical and cylindrical patches as well. The cost associ-
ated to each contraction is the minimum L2 residual among
those of the cluster’s best-fitting plane, sphere, and cylinder.
Unfortunately, this technique can approximate only a sub-
set of the primitives used in [VMC97]. Finally, in [GG04]
the hierarchical clustering is guided by slippable motions,
i.e. rigid transformations that make the surface slide against
the stationery version without forming any gaps. In other
words, the motion of each point is required to be tangent
to the mesh. A slippable component is a collection of ver-

tices which can be approximated through a slippable mo-
tion. A hierarchical clustering such as in [GWH01] is ex-
ploited to compute splippable components which, in their
turn, can constitute planes, spheres, cylinders, linear extru-
sion surfaces, surfaces of revolution and helical surfaces.

Though it was not designed to specifically treat CAD
models, the algorithm presented in [KT03] proved to pro-
vide useful segmentations for this class of shapes too. In-
stead of using a bottom-up hierarchical clustering approach,
this method is based on a fuzzy k-means decomposition that
proceeds top-down by iteratively splitting the whole shape
along lines of deep concavity.

Unfortunately, though some works have been dedicated to
the segmentation of point sets [VB04, YNBH06, MFX∗07],
no existing approach has been designed to automatically
compute a hierarchy of features constituting a comprehen-
sive abstraction of a regular model.

3. Hierarchical point set clustering

The basic idea of the hierarchical clustering is to iteratively
merge neighbouring elements into representative clusters as
long as possible, eventually representing the whole shape
through a single cluster. Depending on the shape represen-
tation, elements to be aggregated can be triangles [GWH01,
AFS06], tetrahedra [AMSF08], or simply points. The pro-
posed approach belongs to the latter case, and two points are
neighbours if they are connected through an arc within the
k-nearest neighbour graph. The result of the iterative clus-
tering is a binary tree of clusters providing a hierarchical
representation of the shape, namely:

1. each single point is a leaf of the tree;
2. the whole shape is the root;
3. a non-leaf node exists if the clusters represented by its

two children were merged into a single cluster.

Since the order in which clusters are merged influences the
resulting binary tree, the ordering criterion must make the
resulting tree (Figure 1) useful for some specifically tar-
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Algorithm 1 Main steps of the hierarchical clustering.
Require: A point set P .
Ensure: A binary tree of clusters representing subsets of P .

1: Compute the k-nearest neighbour graph T of P .
2: Compute an unoriented version U of T in which the arc

(vi,v j) exists if either (vi,v j) or (v j,vi) are in T .
3: Associate a cost to each arc e in U ; we indicate this value

as Cost(e).
4: Create a priority queue h containing all the arcs of U

sorted according to their cost.
5: while h 6= ∅ do
6: remove the first arc e = (vi,v j) from h;
7: contract e to a single node v. This means that e, vi,

and v j are all removed from U and replaced by the
single new node v;

8: remove possible duplications of arcs incident at v;
9: update the cost associated to all the arcs incident at v

and update their position in h accordingly.
10: end while

geted applications. For a regular model, the extracted clus-
ters should capture the structure of the underlying surface.

To this end, we consider the same set of primitives dealt
with in [VMC97]; i.e., planes, spheres, cylinders, cones, and
tori. Then, we strive to sort the merging operations so that
each of the resulting clusters is effectively approximated by
one of the geometric primitives employed. In the following,
we provide an overview on the main steps of the proposed
approach (Section 3.1); then, we discuss how to extract a
segmentation out of the resulting hierarchy (Section 3.2) and
how to optimise it (Section 3.3).

3.1. Algorithm overview

After having computed the k-nearest neighbour graph T of
the input point cloud P , an un-oriented version U of T is
built in which the arc (vi,v j) exists if either (vi,v j) or (v j,vi)
are in T . In this setting, U identifies the connectivity of the
point set and, in analogy to [GWH01], the algorithm itera-
tively contracts all the arcs of U to generate the hierarchy
of clusters (Algorithm 1). Initially, each node of U identi-
fies a single point of P and the contraction of the first arc
corresponds to the union of two points within a single new
cluster. Hence, the node replacing the contracted edge is a
cluster with two points. Note that U represents the connec-
tivity of the clusters at each step of the algorithm.

To perform the contractions in the desired order, each
arc is associated a cost and all the arcs are inserted into a
priority queue sorted according to increasing cost values.
At each step, the first arc is removed from the queue and
contracted (i.e., U is modified), the two corresponding
clusters are merged, and all the arcs incident to the new
node are re-positioned within the queue according to their

updated cost.

Computation of the cost associated to an arc. Let e = (vi,v j)
be an arc in U , and let C(v) denote the set of points ag-
gregated so far within the cluster represented by the node v
of U . Also, let Q(e) = C(vi)∪C(v j) be the set of points that
would form a cluster as the result of the contraction of e.
Let L2

plane(Q(e)) denote the fitting error of the best-fitting
plane through Q(e); this value is computed as the sum of the
squared residuals between the points of Q(e) and their best-
fitting plane. Using an analogous notation for all the other
primitives employed, we associate to e the following cost

Cost(e) =min{L2
plane(Q(e)),L2

sphere(Q(e)), . . .

L2
cylinder(Q(e)),L2

cone(Q(e)),L2
torus(Q(e))}.

Each such quantity is computed as described in Section 4.
For simplicity of the exposition, we did not include explic-
itly the computation of each set C(v) in Algorithm 1. These
sets, however, must be computed as singletons during the
initialisation, and incrementally updated at each contraction.
The binary tree of clusters generated by the algorithm can be
drawn within a 2D coordinate frame so that the y-coordinate
of each node corresponds to the cost of aggregating its sub-
clusters. Such a diagram (dendrogram), can be cut through
a horizontal line at the desired y-value to produce a single-
resolution partitioning or, equivalently, a segmentation of the
point set. In Figure 2, three segmentations are shown as they
result by cutting the dendrogram at the level of the leaves (c),
at an intermediate level (d), and at root level (e).

3.2. Extraction of a segmentation

To compute a segmentation out of the hierarchy, one may
select a desired number of clusters and stop the aggregation
when such a number is reached. This choice, however, would
be somehow against the philosophy of using a hierarchical
setting, in which a preferred number of clusters is not known
a priori. Moreover, in these cases k-means based partitioners
would probably perform a better job.

Assuming that the fitting error monotonically grows
as the clustering proceeds with the bottom-up construc-
tion of the tree, another solution is to select a maxi-
mum admissible approximation error and stop the algo-
rithm when the next aggregation would exceed such an
error. The monotonicity of the error growth is verified
as follows. Let C1 and C2 be two clusters and C12 be
their union. Denoting the fitting primitive of Ci with FCi

and its residual error with d(Ci,FCi), we have that
d(C12,FC12)≥ d(C1,FC1)+d(C2,FC2). Indeed, the primi-
tive FC12 is, by definition, the one that minimises the fitting
error. Since the error is a sum of terms indexed on the points
of the extracted primitives, if we use FC12 to approximate C1
and C2 then d(C12,FC12) = d(C1,FC12)+d(C2,FC12). Other-
wise, using their own best fitting primitives FC1 and FC2 , the
total residual error can only be reduced or left unchanged.
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Algorithm 2 Optimisation of an initial partitioning of P .
Require: A point set P segmented into a set of clusters; let

p.C be the cluster associated to the point p.
Ensure: An optimised assignment of the points to clusters.

1: Initialise the number ni of iterations to be zero; i.e.,
ni := 0.

2: Choose nmax be the maximum number of iterations.
3: for ni < nmax do
4: ni ++;
5: compute the best-fitting primitive Bc for each cluster;

6: for e := (i, j) ∈ T such that pi.C 6= p j.C do
7: if d(p j,Bpi.C) < d(p j,Bp j .C) then
8: p j.C := pi.C;
9: end if

10: if d(pi,Bp j .C) < d(pi,Bpi.C) then
11: pi.C := p j.C;
12: end if
13: if no points were re-assigned then
14: break;
15: end if
16: end for
17: end for

To take into account the model size and the fact that we
use weights while computing fitting errors (Section 4), in our
implementation the threshold is related to the length of the
bounding box diagonal lbb as follows. Let L2(P) be the fit-
ting error, and let d̃2 := 1

∑i wi
L2(P) be the average squared

distance of the cluster from its best fitting primitive. We stop
the algorithm when the next aggregation would make the

value
√

d̃2

lbb
exceed an absolute threshold ε. In this way, if we

scale the input while keeping ε constant, then the resulting
segmentation does not change. To extract the segmentations
of Figures 3, 6, 7, and 8, the parameter ε was set to 0.01.

Note that some segmentations extracted as described here
may not be easily obtained indirectly by identifying the re-
gions’ boundaries. Regions that are interesting from a CAD
user point of view, indeed, may not be bounded by sharp
features or by lines easily detectable on the basis of morpho-
logical characteristics (e.g., the red cluster in Figure 6(a) and
the fillets in Figure 8, right).

3.3. Region optimisation

At the beginning of the aggregation, several primitives are
eligible to interpolate the points being clustered. In fact,
seven “well-placed” points are required to uniquely identify
a torus, which means that if a cluster contains less than eight
points we can assume that the best-fitting primitive interpo-
lates these points. Thus, all the contractions are assigned a
null cost, the aggregation proceeds in a random order and,
even when clusters become large enough to avoid any ambi-

Figure 3: Segmentation of a mechanical part (a) before and
(b) after variational optimisation. In (a), boundary jagged-
ness is due to the aggregation of smaller clusters from previ-
ous levels in the hierarchy (bottom-left box).

guity, we inherit an irregular distribution of points near the
boundaries between adjacent segments (Figure 3(a)).

In order to get rid of this irregularity, we propose a post-
processing based on a variational optimisation of an ini-
tial partitioning. Roughly speaking, we re-compute the best-
fitting primitive (BFP, for short) for each current cluster.
Then, we consider a point p close to the boundary between
two clusters and re-assign it to the cluster whose BFP is
closest to p. The process is repeated for each point having
at least a neighbour assigned to a different cluster. When
no more points can be re-assigned, we re-compute the best-
fitting primitives and proceed to the assignment phase once
again. The process stops after a prescribed number of itera-
tions or when, even after the update of the BFPs, no more re-
assignment takes place. The optimisation algorithm is sum-
marised in Algorithm 2, where d(p,B) := minq∈B ‖p−q‖2
is the Euclidean distance between the point p and its clos-
est point on the primitive B. Our tests have shown that the
optimisation never needs more than four iterations to con-
verge. Comparing Figure 3(a) with (b) shows the effect of
the optimisation.

Though this approach is close in spirit to [WK05], it is
substantially different; at each step of our method, only the
points on the border of clusters are allowed to jump into adja-
cent clusters. In contrast, at each step of [WK05], every clus-
ter is deleted and re-grown starting from the triangle which
is closest to the proxy. This difference makes our algorithm
less “aggressive”, and typically the modifications remain
closer to the original boundaries. As for [CSAD04, WK05],
Algorithm 2 may lead to disconnected clusters, but this is
not a problem for the applications discussed in this article.
In [VB04], an analogous optimization procedure has been
used to improve an initial segmentation of algebraic models
for reverse engineering. With respect to the approach pro-
posed in [VB04], our region optimisation does not require
any threshold to be set, and can treat toroidal surfaces (not
supported in [VB04]).

submitted to COMPUTER GRAPHICS Forum (3/2010).



Marco Attene & Giuseppe Patanè / Hierarchical Structure Recovery of Point-Sampled Surfaces 7

Figure 4: Fitting primitives and parameters: (a) plane, (b)
sphere, (c) cylinder, (d) cone, and (e) torus.

4. Fitting primitives

Herewith, P denotes the set of points in a cluster. We con-
sider a set of five geometric primitives, namely planes,
spheres, cylinders, cones, and tori. Each primitive is un-
ambiguously identified by its parameters (Figure 4); e.g.,
a centre point and a radius uniquely identify a sphere. For
each primitive, our objectives are the computation of (a)
the parameters that identify the primitive and (b) the dis-
tance betweenP and the primitive. For planes [GWH01] and
spheres [Pra87], algorithms are known to efficiently com-
pute their parameters by minimising the fitting error. This
error is defined as the sum L2

primitive(P) of the squared resid-
uals between P and its best-fitting primitive.

The proposed clustering deals with rather dense point
clouds, and the hierarchy to be recovered is actually inter-
esting just in those parts where clusters contain numerous
points each (i.e., the top of the dendrogram). Thus, optimal
fitting strategies are not essential as long as the approxima-
tion discriminates among the various primitives. For exam-
ple, if P is a set of sufficiently numerous points sampled on
a sphere, then P must be closer to the approximately best-
fitting sphere than to all the other best-fitting primitives.

If the point set P := {pi}N
i=1 is uniformly sampled, then

the weight wi of each pi is set equal to one; otherwise, it is
set equal to the area of the splat associated to pi and com-
puted as done in [WK04]. In this way, those points of P
located in regions with a low sampling density are assigned
to higher weights, as they represent larger portions of the
underlying surface M. Unless stated differently, in the re-
mainder all the sums range from i = 1 to N. The definition
of planar and spherical primitives is discussed in Section 4.1;

(a) (b)

Figure 5: (a) Input point-sampled surface and (b) toroidal
primitive that best fits the blue points.

the procedure for cylinders, cones, and tori is detailed in Sec-
tion 4.2, 4.3, and 4.4, respectively.

4.1. Planes and spheres

The center of the planar primitive is identified by b := ∑i wipi
∑i wi

and its normal is the eigenvector of the covariance
matrix M := ∑i wi(pi−b)(pi−b)T corresponding to its
minimum eigenvalue. In this case, the fitting error is
L2

plane(P) := ∑i wi|〈n,pi−b〉2|2.

For a spherical primitive (Figure 4(b)), the centre
c := [cx,cy,cz]T and radius r are computed by minimising
the algebraic distance of the sphere from P [AFS06]. Indi-
cating with pi := (pix, piy, piz), i = 1, . . . ,N, the coordinates
of the points of P , these parameters are given by

[cx,cy,cz,r2− c2
x − c2

y − c2
z ]

T = (AT A)−1AT b, (1)

where W := diag(w1, . . . ,wN) is the diagonal matrix whose
non-null entries are the weights {wi}N

i=1 and

A := W


2p1x 2p1y 2p1z 1
2p2x 2p2y 2p2z 1

...
...

...
...

2pNx 2pNy 2pNz 1

 , b := W


‖p1‖2

2
‖p2‖2

2
...

‖pN‖2
2

 .

The fitting error is defined as

L2
sphere(P) := ∑

i
wi(‖pi− c‖2− r)2.

4.2. Cylinders

A cylinder is conveniently identified through the following
parameters: a unit vector a specifying the direction of the
axis; a centre point c on the axis; a radius r (Figure 4(c)). As
shown in [CG01, PGK02, VMC97, WK05], if normal infor-
mation is available and reliable, then the problem of com-
puting fitting cylinders is solved rather robustly. Thus, our
solution is inspired by these approaches and normal vec-
tors to the points of P are estimated as reviewed in Sec-
tion 2.1. The first step computes the cylinder axis as the
unit vector which is the most orthogonal to all the normal
vectors ni := n(pi) at pi. To do this, we define the positive
semi-definite matrix C := ∑i wi(ninT

i ) and assign to a the
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(a) (b) (c)

Figure 6: Stability of the segmentation with respect to a varying amount of noise, which grows from (a) to (b) and (c). While
increasing the noise, the number, type, and shape of each primitive do not change.

eigenvector of C corresponding to its minimum eigenvalue.
Also, let dx and dy be the other two eigenvectors of C, and
let p̃i := [〈pi,dx〉2,〈pi,dy〉2] be the 2D projection of pi on a
plane orthogonal to a and passing through the origin.

Using a 2D version of (1), the centre c̃ := [c̃x, c̃y] and ra-
dius r of a circle that fits the weighted p̃is are computed.
While the radius of such fitting circle is identified with the
radius of the cylinder, its centre c̃ must be transformed back
to 3D space, i.e., c := c̃xdx + c̃ydy. Once the parameters of
the fitting cylinder have been found, the fitting error is

L2
cylinder(P) := ∑

i
wi(‖(pi− c)×a‖2− r)2.

4.3. Cones

A cone is conveniently identified through the following pa-
rameters: a unit vector c specifying the direction of the
axis; an apex a; and the tangent of the semi-apical an-
gle tanθ (Figure 4(d)). For the computation of the cone
that best fits a point set, the iterative algorithms presented
in [KL87, LMM98] are too slow for our purposes. Thus, as
we did for cylinders, we exploit normal information to cast
the problem to a robust, approximate, and analytic approach.

Firstly, we compute the cone axis c. Since the Gauss map
of a cone is a circle orthogonal to c, we compute the best-
fitting plane of the Gauss map of P and consider the nor-
mal of such a plane to be the direction c of the axis. Let
ni := n(pi) be the normal vector at pi and b := 1

∑i wi
∑i wini

the weighted average of these normals. We define a positive
semi-definite matrix C := ∑i wi(ni−b)(ni−b)T and assign
to c the coordinates of the eigenvector of C corresponding
to its minimum eigenvalue. Let di := (ni× c)×ni be a nor-
malised tangent vector at pi coplanar with c. If pi belongs
to a cone, then the line passing through pi with direction di
contains the apex of the cone and di is the direction of zero
curvature. Thus, we define the apex a as the point which is
closest to all such straight lines in the least squares sense.
The squared distance of a point q from the straight line Li
defined by a point pi and a unit directional vector di is

d2(q,Li) := ‖(q−pi)×di‖2
2.

Our objective is to find a such that the quadratic convex
functional E(a) = ∑i d2(a,Li) is minimised or, equivalently,
such that all the partial derivatives of E(a) are null. Taking
into account the weights of the pis leads to a linear sys-
tem (∑i wiMi)a− (∑i wibi) = 0, where the matrix Mi and
the vector bi are defined for each pi as follows

Mi :=

d2
iy +d2

iz −dixdiy −dixdiz

−dixdiy d2
ix +d2

iz −diydiz
−dixdiz −diydiz d2

ix +d2
iy

 ,

bi :=

pixd2
iy− piydixdiy− pizdixdiz + pixd2

iz
piyd2

iz− pizdiydiz− pixdiydix + piyd2
ix

pizd2
ix− pixdizdix− piydizdiy + pizd2

iy

 .

Hence, the apex a of the conical primitive is computed as
a := (∑i wiMi)−1(∑i wibi). When the parameters of the fit-
ting cone are all available, the fitting error is

L2
cone(P) :=

1
1+ tan2 θ

∑
i

wi(‖(pi−a)× c‖2+

−|〈pi−a,c〉2| tanθ)2.

We now calculate the parameter tanθ so that the above equa-
tion is minimised. This is equivalent to finding tanθ so that
the derivative of L2

cone(P) is equal to zero; i.e.,

tanθ = ∑i wi‖(pi−a)× c‖2

∑i wi|〈pi−a,c〉2|
.

4.4. Tori

A torus is identified through the following parameters: a cen-
tre point a; a height vector d; and a radius r (Figure 4(e)).
Note that r is the radius of the circular axis of the torus, ‖d‖2
is the radius of the generating circle, and d is the normalised
direction of the axis of symmetry. To compute these param-
eters, we observe that one of the principal curvatures of a
torus is constant and its reciprocal is the radius ‖d‖2 of the
circle that generates the torus. Let ki1 and ki2 be the (signed)
principal curvatures at pi (Section 2.1), with ki1 ≤ ki2. The
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Figure 7: Segmentation robustness with respect to a fairly different sampling density.

variance of the principal curvatures within P := {pi}N
i=1 is{

Var(k1) := N
|∑i ki1| ∑i k2

i1−|∑i ki1|,
Var(k2) := N

|∑i ki2| ∑i k2
i2−|∑i ki2|.

Let k̃1 := 1
N ∑i ki1 be the average minimum curvature, and

let k̃2 be the average maximum curvature within P . The
radius ‖d‖2 of the generating circle is assigned the abso-
lute value of the reciprocal rd of the principal curvature that
changes the less, that is

rd :=
{

1/k̃1 if Var(k1) < Var(k2),
1/k̃2 otherwise.

and ‖d‖2 := |rd |. Let q be a point belonging to the torus, and
let n(q) be the normal at q. Note that when q is moved to-
wards the opposite direction of n(q) at a signed distance rd ,
its new position is on the circular axis of the torus. Indeed,
the circular axis coincides with the locus of points obtained
by moving all the points of the torus as described.

We now move all the pis using this process and compute
their best-fitting plane (Section 4.1) and consider the normal
of such a plane as the direction of the height vector d. Fur-
thermore, we project these transformed points on the fitting
plane and compute their best-fitting circle, whose radius and
centre correspond to the radius r and centre a of the torus.

Let us consider the projection p̃i := pi− rdni of the
point pi, where ni is the normal at pi and the
point b̃ := 1

∑i wi
∑i wip̃i is the barycentre of the p̃is. Let

M̃ := 1
∑i wi

∑i wi(p̃i− b̃)(p̃i− b̃)T be the covariance ma-

trix of the p̃is. Indicating with {d,dx,dy} the eigenvec-
tor of the matrix M̃ corresponding to the eigenvalues
λ1 ≤ λ2 ≤ λ3, the height vector of the torus is assigned the
value d := ‖d‖2d. Now, let p̃i := [〈p̃i,dx〉2,〈p̃i,dy〉2] be the
projection of p̃i on a plane orthogonal to d. As we did
for cylinders, we reduce the dimensionality of (1) to find
the centre c̃ := [c̃x, c̃y] and radius r of a circle that fits the
weighted p̃is. The centre of the torus is obtained by trans-
forming c̃ back to 3D space as c := c̃xdx + c̃ydy and the ra-
dius r of the torus corresponds to the radius of the fitting

circle. Finally, the fitting error is computed as

L2
tori(P) := ∑

i
wi [ (‖(pi−a)×d‖2− r)2+

+|〈pi−a,d〉2|2
]1/2
−‖d‖2)

2.

5. Results and discussion

Our prototype has been implemented in C++ and tested on
an Intel Core 2 PC equipped with 2 Gb of RAM. To ex-
tract the k-nearest neighbour graph, we used a function pro-
vided by the ANN library [AMN∗98] that employs kd-trees
to efficiently compute exact nearest neighbours. In all our
experiments, we used k = 10 to calculate the connectivity
graph U , while a larger value of k was used to compute the
normal vectors and the curvature tensors. This latter value
of k ranged from 20 when the cloud was affected by low
or no noise (e.g., Figure 6(a,b)), to 40 when the point-set
was significantly noisy (e.g., Figure 6(c)). In general, we
have experimented that a proper increase of k within such
a range makes our algorithm sufficiently stable in presence
of noisy data. Furthermore (Section 4), we have verified that
weighting the points during the computation of the fitting
primitives and the corresponding residuals makes our ap-
proach suitable to treat point sets with fair variations in sam-
pling densities (Figure 7). However, the cloud must be lo-
cally dense enough to permit the use of the k-nearest neigh-
bours as acceptable substitutes of an explicit connectivity.
PointShop3D was used to produce the illustrations depict-
ing point-sampled surfaces. The point sets illustrated in Fig-
ures 3, 7(left), 8(left), 9, and 11 are all aligned range scans
produced by laser digitisation. As for data noise, the intrin-
sic coherent misalignment among the various scans might
impact the order of the very first point aggregations, but it
is far too small to have an influence on any meaningful seg-
mentation.

For the sake of simplicity, the input point set is assumed to
represent a single connected object. If multiple components
must be treated, we analyse the connectivity of U and then
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Figure 8: (a) The carter model could not be segmented properly through [AFS06], whereas (b) the complete set of primitives
employed by our approach makes the segmentation more significant. If the primitives used by [AFS06] are sufficient, then the
crank model could be segmented properly by both [AFS06] (c) and our method (d).

run the clustering separately on the various components. Al-
ternatively, U is enriched with the arcs of the Euclidean min-
imum spanning tree (EMST, for short) of P and the algo-
rithm is run once on the resulting single component. In this
latter case, if the connected components are assumed to be
features of the shape and not induced by a poor sampling,
then the arcs of the EMST that were not already in U may be
contracted after all the others. In the following, we discuss
the computational complexity (Section 5.1), the comparison
with previous work, and the main limitations (Section 5.2)
of the proposed approach.

5.1. Computational complexity and performances

We analyse the algorithmic complexity of our clustering al-
gorithm by firstly assuming that the tree is perfectly bal-
anced, and then by generalising the result also in light of
experimental observations. Without loss of generality, we
suppose that the number N of points of P is a power of
two. Since the number E of edges in U is bounded by 2kN,
where k is the number of neighbours used to compute U ,
we have that O(E) = O(N). To count the number of opera-
tions needed to construct the binary tree, we scan the hierar-
chy level by level from the leaves (level n in the tree) to the
root (level 1), with n = log2N. To construct level n−1, we
generate the fitting primitives of E potential clusters made
of 21 points each. For level n−2, we need to compute the
primitives of E/2 potential clusters made of 22 points each
and so on. In general, for the level n− i we need to com-
pute E/(2i−1) potential clusters made of 2i points each. The
computation of each fitting primitive is linear, hence for 2i

points it requires O(2i) operations. Thus, the total number
of operations necessary to construct the hierarchy is propor-
tional to

n−1

∑
i=1

E
2i−1 2i = 2E(n−1). (2)

Since N = 2n and E ∈ O(N), (2) becomes
2E(n−1) ∈ O(En) = O(2nn) = O(N logN) and it reason-
ably matches the actual time required by our implementation

on various examples (Table 1, Figure 10). For the worst-case
complexity, which occurs when the tree is completely
unbalanced, the number of levels n is equal to the number
of points N. Following a similar path as above, the worst
case complexity is O(N2). We conclude that the complexity
varies between N logN and N2, depending on how balanced
the tree is. Experiments tend to show that in practice we are
closer to the balanced tree (i.e., favorable) situation.

5.2. Comparison with the state of the art

We have compared our approach with state-of-the-art algo-
rithms. The first comparison is against the method proposed
in [AFS06], in which the triangles of a mesh are hierar-
chically clustered while minimising the approximation error
with geometric primitives. Besides being able to work on
point sets without any explicit connectivity, a significant ad-
vantage of our method is the broader set of primitives used
for approximation, which makes it possible to obtain use-
ful segmentations for a larger class of models. For example,
the conical feature in the carter model (Figure 8, left) could
not be captured by [AFS06], whereas our approach success-
fully provides a useful segmentation. If the object contains
only planar, spherical, and cylindrical features, then the two
methods provide comparable results (Figure 8, right). When
the number of elements (i.e., triangles in [AFS06] and points
in our method) being clustered is comparable, we observed
that our algorithm is slightly slower, as a consequence of the
larger number of primitives.

In a second experiment, we have compared our approach
with the algorithm proposed in [SWK07], which provides
an optimal partitioning of the input point set according to a
criterion that is similar to the one that drives our clustering.
We have observed that by interrupting the clustering as de-
scribed in Section 3.2, we obtain segmentations comparable
with the results reported in [SWK07] (Figure 11). This is a
noticeable fact because our approach was not studied to cre-
ate a single optimal segmentation, while it was designed to
produce a whole hierarchy of segmentations which are used
in a much broader spectrum of applications.
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Figure 9: Segmentation of a basilica with 2M points.

Limitations Our approach has been designed to reconstruct
a hierarchical organisation of the features composing a reg-
ular model; if the input does not belong to this class, then
our method does not provide significant results. In princi-
ple, it should not be difficult to extend the algorithm to cope
with a larger class of models, perhaps including quadric
surfaces [YLW06]. However, the freedom in shape patches
characterised by numerous parameters would probably lead
to higher computational costs. Another drawback is the use
of a global priority queue that makes it difficult to parallelise
the algorithm to deal with large clouds of points.

6. Applications

In this section, our hierarchical segmentation is exploited
to implement a powerful region-selection mechanism (Sec-
tion 6.1) and to reconstruct manifold meshes (Section 6.2).

6.1. Interactive region selection with applications to
model re-design

When our method is applied to regular models, clusters of-
ten correspond to structural features of the object which are
hierarchically nested within the binary tree. For example,
a cylinder may correspond to a through hole, a plane to a
thin slab, a torus to a fillet, and so on. Furthermore, the fil-
let itself may be part of a slot that, in its turn, is part of
a slab in the hierarchy. This fact suggested us to exploit
our hierarchical clustering for the interactive selection of
shape features. According to previous results on tetrahedral
meshes [AMSF08], we have developed an intuitive system
that interactively selects parts of the shape by traversing the
binary tree of clusters. The cost used to sort merging oper-
ations, as well as the greedy and incremental nature of the
algorithm itself, makes the resulting hierarchies contain vir-
tually all the interesting features of the shape at all the scales.
Thus, by browsing the hierarchy, it is likely that a user finds
several "interesting" features that are eligible for editing.

On this premise, we have developed an interaction mech-
anism to select a shape feature by clicking on a point (i.e.,

Figure 10: With reference to Table 1, this graph highlights
that our algorithm computes the hierarchy in a time that is
(nearly) linearly proportional to the number of input points.

Figure 11: Segmentation obtained by [SWK07] (left) and
(middle, right) two resolutions of our hierarchy.

a pixel rendering a splat), and by rotating the mouse wheel
to select the size of the feature containing the point clicked.
The feature hierarchy is computed once as a pre-processing
step. Then, a mouse click on a point corresponds to select-
ing a leaf of the cluster tree, and the rotation of the mouse
wheel causes a motion upwards/downwards along the path
connecting the selected leaf to the root of the tree. The nodes
along this path are the clusters in the hierarchy; in particu-
lar, the path represents a sequence of clusters approximated
by geometric primitives of increasing size and each cluster
properly contains its predecessor in the sequence (Figure 1).

In the example of Figure 12, the user may click on a point
on the bolt and rotate the mouse wheel to select among the
bolt itself, the whole stiffener containing the bolt, and so on,
up to the whole shape. Once a feature has been selected, its
boundary is refined on the fly through a local run of the op-
timisation described in Section 3.3 where only the selected
feature and its adjacent clusters are modified.

Though Figure 12 shows an example of re-design, our
purpose is not to describe a re-design system: this would
require to describe too many aspects (e.g., interaction tech-
niques to shift the features, algorithms to resample the result-
ing holes, . . .) that are out of the scope of the article. The fo-
cus of the figure, in fact, is only to show a simple application
of our mechanism for feature selection. Also, note that using
a hierarchy provides more flexibility than a single-resolution
segmentation. In Figure 12, a single segmentation would
capture either the bolt only or the group stiffener+bolt, but
not both as needed in our redesign application. The use of
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Figure 12: After having computed the hierarchy of the model (a), the user clicked on the bolt, rotated the mouse wheel to select
all its points, and moved the bolt to a new position (b) on the stiffener. Through a further wheel rotation, the user increased the
size of the selection to cover the whole stiffener. (c) Finally, the stiffener along with its bolt were moved to a new position.

Table 1: Timings. Number N of points and seconds required
to perform the clustering: the total time is the sum of this
value plus k-nearest neighbours (k := 20), normals and cur-
vature tensor computation. See also Fig. 10.

Test N Clustering Total
Figure 2 10000 0,9 1,17
Figure 3 293672 36,64 48,39
Figure 6 98556 12,9 15,81
Figure 7(a) 353334 43,8 55,97
Figure 7(b) 20776 1,95 2,59
Figure 8 left 533746 63,3 83,77
Figure 8 right 334511 38,25 49,48
Figure 9 2187366 281,52 381,5
Figure 11 606542 72,88 95,75

a hierarchy allows one to abstract the geometry depending
on the scale, so that the group stiffener+bolt is considered as
an approximate stiffener at one scale, and as an actual pair
stiffener plus bolt at a finer scale.

6.2. Idealised mesh reconstruction

When our hierarchical clustering is used to extract a seg-
mentation, clusters may be exploited to create a patch-based
manifold connectivity among the points. To this end, let
us suppose that the input point set P has been subdivided
into a family {Ri}k

i=1 of clusters, such that Ri ⊆ P and each
cluster Ri has been associated to its best-fitting primitive Σi
and parameters (Section 4). Focusing on the cluster Ri,
we project each point p js ∈ Ri, s = 1, . . . , li, onto the point
p̃ js ∈ Σi that minimises the Euclidean distance ‖p js − p̃ js‖2.
This step is easily done analytically based on the parame-
ters defining the primitive. Once each point of Ri has been
mapped on Σi, we reconstruct a local manifold connectivity
among the projected points using the algorithm in [GKS00],
which computes the surface normals by assuming specific
sampling conditions. In contrast, our implementation asso-
ciates to each projected point the normal of the fitting prim-
itive at that point, thus making the reconstruction more ro-

bust. After this initial reconstruction, which results in a tri-
angle mesh that we call Ki, each triangle ti j is analysed. If at
least one of its three edges does not belong to the k-nearest
neighbour graph of P , then ti j is removed from Ki.

In some cases, the resulting meshes are glued together to
form a single connected component. To do this, we exploit
the graph U that codes the adjacency relations among the
clusters when Algorithm 1 is terminated to extract the seg-
mentation. Also, we use the original graph U that codes the
initial point-to-point connectivity at the beginning of Algo-
rithm 1. Then, for each arc e = {Ra,Rb} ∈ U we proceed
as follows: first, we search in U the shortest arc s connect-
ing two points pai and pb j belonging to Ra and Rb respec-
tively and being boundary vertices in Ka and Kb. Then, we
merge Ka and Kb in a new single mesh Kab by connecting pai

and pb j through two new triangles as described in [AF06].
After having connected all the Kis using the aforementioned
technique, the remaining holes are triangulated as done by
Barequet and Sharir in [BS95]. Finally, sharp features are
reconstructed by running EdgeSharpener [AFRS05]. The
whole process is depicted in the example of Figure 13.

Clearly, the union of the initial Kis succeeds only if they
are actually parts of a whole manifold and orientable surface
(Figure 13). Actually, the projection of points on their corre-
sponding primitive may generate intrinsically non-manifold
configurations, as in the example of Figure 1 where the stiff-
ener is idealised with a single plane. In these cases, our mesh
reconstruction stops after the creation of the Kis, and lets the
user choose whether to join manually the patches.

Note that if the input is sampled on a regular model, this
approach to mesh reconstruction has the important effect
of removing (not only reducing) the noise through a least-
squares approximation. Furthermore, the user may act on the
threshold error to stop the clustering so that unimportant tiny
features are removed as well, thus producing an idealized
surface out of the input points. Clearly, these considerations
do not apply if the input is not a regular model.
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Figure 13: Once a proper segmentation out of (a) a noisy
point set has been extracted, each point is projected on the
best-fitting primitive of its cluster, for which a local mesh (b)
is constructed. (c) Cluster-patches are connected through
strips of triangles to form a single component and (d) sharp
edges are reconstructed using [AFRS05].

7. Conclusions and future work

We have presented an algorithm to construct a multi-
resolution representation of a point-sampled surface and to
effectively implement powerful mechanisms for region se-
lection, which can be exploited when re-designing reverse-
engineered objects. Then, from our hierarchies manifold
meshes can be reconstructed through single-resolution seg-
mentations. Our future work will be focused on the inclu-
sion of new fitting surfaces and on the speed-up of the al-
gorithm. For this last aim, we will exploit a random sam-
pling [SWK07] or an initial segmentation that splits the in-
put properly to parallelise the clustering [VB04, VMC97].
Finally, the surface reconstruction can be improved by ex-
ploiting the intersection of the extracted fitting primitives in-
stead of using the EdgeSharpener algorithm.
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