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Plumber: a method for a multi-scale decomposition of 3D shapes
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Abstract
Plumber is a specialized shape classification method for detecting tubular features of 3D objects represented by a triangle
mesh. The Plumber algorithm segments a surface into connected components that are either body parts or elongated features,
that is, handle-like and protrusion-like features, together with their concave counterparts, i.e. narrow tunnels and wells. The
segmentation can be done at single or multi-scale, and produces a shape graph which codes how the tubular components are
attached to the main body parts. Moreover, each tubular feature is represented by its skeletal line and an average cross-section
radius.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and object repre-
sentations

1. Introduction

Given a two-manifold closed surface represented by a triangle
mesh, Plumber automatically extracts the features that can be de-
scribed as generalized cylinders or cones; we call these features,
together with their concave counterparts, i.e. narrow tunnels and
wells, tubular features. The Plumber approach classifies the ver-
tices of a given triangle mesh according to their curvature and shape
behaviour in neighbourhoods of increasing size (see Figure 1, 2).
Seed vertices are located on tubular features, and clustered to form
candidate seed regions which are then used to compute the first re-
liable tube section, called the medial loop, which is ensured to be
around each candidate tube and which works as a generator of the
feature. Then, the medial loop is moved in both directions on the
surface, by using spheres placed at the barycentres of the new me-
dial loops, until the tube is completely swept. The size of the tube is
related to the radius of the sphere, and the stop criterion is given by
the abrupt variation of the medial loops’ lenght. The tube detection
is devised in order to work in a multi-scale fashion, where small
tubes are detected at first and larger ones at following steps. After
the surface segmentation, a geometric representation of each tubu-
lar feature is constructed by computing its skeletal line. The con-
figuration of each feature, whose section and length can arbitrarily
vary, and its attachments to the body are hierarchically coded in a
shape graph.

Different application fields make the surface segmentation an
important task. For instance, while tubular structures can be quite
easily defined during design processes their automatic extraction
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(a) (b)

Figure 1: Tubular features recognized by Plumber on a complex
model: (a) tube axis and loops, (b) tubes colored with respect to
their scale.

from 3D meshes is not a trivial task. We believe that a variety of
applications, especially shape recognition and analysis, will benefit
if tubular features are identified and abstracted to a centreline and a
set of sections. These abstract models, may facilitate the measure-
ments of changes over time in medical applications (e.g. calcifica-
tion process), or detect abnormalities such as unnatural narrowing
or ballooning. Finally, reliable cylindrical models are essential for
proper design of prosthetic tubular structures.

The basic idea of Plumber consists of describing a shape by
using both local point-wise, and global region-wise measures for
shape decomposition and skeleton extraction; in the following, we
review the state of the art on those concepts used in the paper.
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Figure 2: Plumber method: (a) identification of limb vertices, (b) extraction of their connected components and medial loop, (c) iteration,
(d) tube and a cap (black) found at this scale.

Decomposition methods based on the analysis of the shape
boundary evaluate local characteristics to identify patches of the
surface that group vertices with similar properties with respect to
some measure. In most cases, surface vertices are clustered using
the Gaussian curvature: for instance, the segmentation of a free
form surface into patches of similar curvature is one of the key
steps in reverse engineering [SJTH99, VMC97], and for the val-
idation and verification of visualization products to control mesh
quality [ZP01].

In [KT03], the segmentation method is defined as a fuzzy cluster-
ing of vertices where the probability that a face belongs to a patch
depends on its distance from the other faces of the patch. The ad-
vantage of the method is the avoidance of over-segmentation, and
that boundaries between adjacent regions are not jagged. The re-
sults show that the segmentation is meaningful, in the sense that
the extracted components locate the main natural features of the
objects.

Skeletons such as the Medial Axis Transformation (MAT) and
the Reeb Graph assume that the surface is the boundary of a vol-
ume, and analyse the shape according to its interior, thus providing
descriptions which better highlight its global structure.

The MAT is constructed using the paradigm of the maximal en-
closed spheres, whose centres define a locus of points which de-
scribes, together with the associated radius, the width variation of
the shape. The MAT of a 3D surface is generally a non-manifold
complex, computationally heavy, and sensitive to noise because
tiny perturbations may produce a whole new arc. Furthermore,
there is not a direct relation between tubular features and specific
components of the MAT, especially when the tubes have an arbi-
trary shape and the cross sections do not exhibit any symmetry.

More relevant for the identification of tubular features are meth-
ods for the extraction of skeletons, which provide an abstract shape
representation by a graph of lines that retain the connectivity of
the original shape. The Reeb graph [SKBT96, VL00, BMMP03]
is a topological structure which codes a given surface by storing
the evolution of the level sets of a mapping function defined on its
boundary.

In [LTH01], tubular parts are identified using a sweeping tech-
niques along the arcs of the skeleton which is constructed by join-
ing the edges remaining after an edge collapse process on the whole
mesh. These edges are linked in a tree structure, and it is used as a
support for the sweeping process where the mesh is intersected by
a set of planes and tubes are identified by looking at the geometry
of the cross-sections.

The main difference between Plumber and segmentation meth-
ods previously discussed is that we extract building primitives of
the object with a specific structure, i.e. generalized cones and cylin-
ders, and not only related to a curvature and concavity analysis
[MPS∗04, KT03]. Furthermore, while skeletal representations do
not provide a scale-based decomposition of the shape and are usu-
ally unstable with respect to wripples or wrinkles, Plumber differ-
entiates tubular features of different dimension.

The reminder of the paper is organized as follows; in section
2 the Plumber method is detailed, and the discussion on possible
applications concludes the paper.

2. The Plumber method

Intuitively, ideal tubes are identified by parts of the shape whose
intersection with a sphere of appropriate radius produces two inter-
section curves. The section of the tube and its axis can be arbitrarily
shaped, and the size of the tube is kept as a constraint during the
identification process. Chosen a level of detail R, Plumber performs
the following steps:

1. identify limb-regions associated with at least two loops on M
(see Figure 2(a));

2. shrink each of the two selected boundary components along the
surface to its medial-loop, whose points are nearly equidistant
from the two border loops (see Figure 2(b));

3. expand-back the medial-loop by sweeping the extent of the
shape in both directions. More precisely, at each iteration we
place a sphere of radius R in the barycentre of the new medial
loops. If the intersection between the sphere and the surface gen-
erates two loops, mesh vertices inside the sphere are marked as
visited;

4. the procedure is iterated in both directions until:

• no more loops are found, or more than one loop is found on
not-visited regions;

• the new loop lies on triangles that are already part of another
tube, or the length of the new loop exceeds a pre-defined
threshold.

5. the tube skeleton is extracted by joining the loops’ barycentres.

The previous steps are detailed in the following paragraphs.

Vertex classification Given an increasing set of radii Ri, i =
1, . . . ,n, Plumber characterizes a 3D mesh M in a neighbourhood
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of a vertex p at the scale Ri by analysing the evolution of the con-
nected components of the curve γi := M∩S(p,Ri), where S(p,Ri)
is the sphere of center p and radius Ri [MPS∗04, MP02]. The fol-
lowing classification is used:

• 1 boundary: the surface around p is considered topologically
equivalent to a disc (see Figure 3(a)).

• 2 boundary components: the surface around p is tubular-shaped
(see Figure 3(b)). Their lengths are used to distinguish between
conic and cylindrical shapes, and p is classified as a limb-vertex.

• n ≥ 3 boundary components: in a neighbourhood of p a branch-
ing of the surface occurs (see Figure 3(c)).

(a) (b) (c)

Figure 3: Different cases of sphere to surface intersection.

Intersecting the mesh with a sphere with radius Ri allows to iden-
tify limb-vertices if they lay on a tube of diameter Ri or smaller. At
each vertex p ∈ M, we consider three spheres of radius Ri − ε, Ri,
and Ri +ε with ε given threshold proportional to the minimum edge
in the triangulation. We consider limb vertices those ones whose
curve γi has two or more boundary components (see Figure 4). This
classification improves stability for identifying tubes of arbitrary
cross section where isolated limb-vertices could appear; a stricter
choice consists of considering as limb vertices those ones classified
with the same label at all the three scales.

(a) (b) (c) (d)

Figure 4: In yellow limb-vertices found at scale R− ε (a), R (b),
and R+ ε (c). All the limb vertices are depicted in (d).

The choice of the set {Ri}i=1,...,n is related to the scale of the fea-
tures which have to be extracted, and for performing a multi-scale
analysis of the shape; small radii determine details, while bigger
ones are used to analyse the global characteristics of the surface.
Further discussions are given in the paragraph Mutli-scale analy-
sis.

Identification of tube candidates from limb vertices The second
step is the identification of the maximal edge-connected compo-
nents of limb-vertices, using a depth-first search. Note that while
the analysis of the evolution of γi produces a vertex-oriented clas-
sification of M, regions composed by limb-vertices are not guar-
anteed to be tube-shaped as a whole (see Figure 2(a), on the han-
dle). In particular, limb regions may have not two boundary curves.

Therefore, the next step defines a criterion for judging if a limb-
region is a good candidate for the tube identification; that is, the
limb-region is around the tube. For instance, in the case that the
tube section is ellipsoidal and its size is greater than the chosen
scale, it may happen that the spheres used to classify the vertices
produce only one intersection curve on one side of the tube, and two
on the other side (see Figure 5), thus giving rise to a limb-region not
surrounding the tube. Therefore, the region is not tube-shaped at the
given scale and it has to be discarded; it will be found at a larger
scale.

Figure 5: Example of limb-regions (in yellow) whose vertices on γ
have one boundary component.

Medial loop generation Seed tubular regions are used to construct
a medial loop around each candidate tube that will be used for the
tube identification and its centreline construction.

Because we have already detected all the candidate tubular re-
gions, a seed point for each tube is selected; for instance, we could
choose the centroid of each region, i.e. the point with maximum
distance from the region boundary, and then generate the loop with
one of the methods proposed in [VF02, GW, LPVV01]. Instead,
Plumber relies on the limb-region boundaries which are loops sur-
rounding the tube. The idea is to find the medial loop by moving
the boundary loops in the middle of the limb-region; to this end,
we perform a morphological shrink by simultaneously invading the
component from its two boundary components.

(a) (b) (c) (d) (e)

Figure 6: A tubular region affected by small features, like the neel.
The configuration of the sphere/mesh intersection is depicted, with
spheres centred in vertices of different feature types: (a) limb, (b)
blend, (c), (d) tip, (e) split.

Firstly, the two boundary components of the limb-region (the two
of greater length if the region has three or more border loops, as in
Figure 6(e)) are computed. Let R and L (for “right” and “left” re-
spectively) be the two boundary components of the tube; at first,
each vertex p on L is associated with the couple (0,+∞) that indi-
cates that p has distance 0 (resp. +∞) from the boundary L (resp.
R). The same initialization applies to R.
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The distance of a vertex p from one boundary is computed as the
shortest edge path connecting p with a boundary vertex. Then, the
distance values of all points are updated, propagating from L and R
towards the interior of the region. The distance propagation from L
will update the first value of the distance vector, while that from L
will affect the second field; at the end of the process, vertices are
classified as nearer to L or R (see Figure 7). Edges connecting ver-
tices of different type are cut by the medial loop we are looking for;
that is, we join the mid-points of those “medial edges” to produce
a medial loop. This construction achieves two good effects with
respect to other methods [Kar99, VF02]: the medial loop is guar-
anteed to be non-trivial and inside the region. The non-minimality
of its length does not affect the growth of the tube, and the con-
struction of the skeleton. In the case of three or more boundary
components, the choice of starting from the two loops of greater
length is to guarantee a stronger reliability to the tube extraction
with respect to smaller intersection curves which may be due to
local undulations of the shape.

(a) (b) (c)

Figure 7: (a) Limb vertices, (b) connected component of the limb
vertices with two boundary components, and medial loop (marked
curve), (c) medial sphere centred in the barycentre of the medial
loop, and tube growing.

Loop expansion and skeleton construction The loop expansion
is controlled by a verification procedure which, at each step, ex-
tends the center-line and at the same time ensures that the surface
is tubular around it. A first medial sphere is drawn, whose centre
p is the barycentre of the medial loop, and whose radius is R. If
M ∩ S(p,R) has not two boundary components, the growing stops
and the candidate tube is discarded. Otherwise, a new sphere with
the same radius is centred in the barycentre of the two loops; the
process is then split into two parts, trying to grow the tube in both
directions. Now we focus on the sphere moving in one of the two
directions, since the other case is symmetric.

At each iteration, the sphere rolls to the barycentre of the next
loop, and the triangles laying completely or partially inside the
sphere are marked as belonging to that tube. Then, the intersec-
tion between the sphere in the new position and the mesh is again
computed, taking into account only the intersection curves through
non visited triangles (all the spheres except the medial one have al-
ways a “backward” loop, passing on the already marked triangles).
During the loop expansion, the following cases may arise:

• no intersection curves are found. This is the case of a tubular
protrusion terminating in a tip; visited triangles locate a cap (see
Figure 8(a), in the square);

• the intersection curve consists of one loop (see Figure 8(a)). If
its length is less than a pre-defined threshold, the size of the tube
section is not varying too much; the loop becomes a new cross

section and its barycentre contributes to the skeleton as a new
node. Otherwise (see Figure 8(b), in the oval), the growth stops.

• the intersection counts two, or more loops; that is, a bifurcation
occurs (see Figure 8(b)). The growing of the tube in this direction
stops, and the last visited triangles are unmarked.

Finally, the barycentres of the medial loops are joined to define
the tube skeleton.

(a) (b)

Figure 8: (a) No new loop is found on the snake tail (in the box),
and a loop discarded after the length check on the head (in the
oval). (b) A branching occurs on the dolphin tail.

Multi-scale analysis The extraction of tubes at scales R1, . . . ,Rn

adopts a fine-to coarse strategy, marking triangles as visited while
the tube grows and which are not taken into account during the fol-
lowing steps (see Figure 9). Analogously, the medial loop compu-
tation simply does not take into account smaller tube vertices, prop-
agating distance values only on not-visited vertices (Figure 9(d)).
Decisions are taken when the loop passes partially on not-visited
and tube triangles. For example, in the case depicted in Figure 9(e),
the two smaller loops fall on tube triangles, and are not counted;
therefore, this is the case of two intersection loops, and not that of
a branching. The tube is grown, and the result of the two iteration
steps is shown in Figure 9(f). This set of radii is selected by the user,
or assigned by uniformly sampling the interval from the minimum
edge lenght in M to that of the diagonal of its bounding box.

At the end of the whole process, tubes are labelled with respect to
the scale at which they were found. The connected components of
the shape parts which are not classified as tubes or caps define body
parts of the object, and the resulting decomposition is coded in a
tube-body connectivity graph which represents the spatial arrange-
ment of the tubular features onto bodies. A smooth transition of
radii ensures a meaningful growth of the tube at a scale Ri, while
discarding smaller features and analysed at the previous levels of
detail R j, j = 1, . . . , i− 1.

Strict/ non strict mode Together with the size of the sphere rolling
over the centreline, the other parameter to be fixed in the tube grow-
ing step is the threshold in the loop length check. To this end, we
stop the growing when the tube becomes too large, i.e. the length
of the intersection loops varies too much.

If we consider a natural object, we probably do not want to de-
compose natural limbs into pieces; on the other hand, in the case
of a manufactured model, we may want to be precise with respect
to the tube size, eventually splitting a tube into components of
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(a) (b) (c)

(d) (e) (f)

Figure 9: Iteration of Plumber at increasing scales.

(even slightly) different sections. For this reason, two alternatives
are available (see Figure 10):

• a strict mode, useful in CAD and medical applications,
• a non-strict mode, for other applications where a continuous

variation of the tube size does not require to split the tube.

In the strict mode, each time a new loop is generated its length
is compared with that of the intersection loops associated to the
medial sphere at the beginning of the process, and not with the
length of the medial loop tube section which can be non minimal
and misleading. Other choices were also taken into account, such
as average, minimum, and maximum tube length; the one adopted
is a compromise between the required strictness and robustness. In
the non strict mode, a loop is accepted if its length is less or equal
to twice the length of the previous loop. In both cases, the user can
select values on the base of a-priori information or specific needs.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (l)

Figure 10: (a) Initial level of detail, (b) limb-region, (c) tube grow-
ing in non-strict mode, and (d) tube extraction. In (e) tube growing
from the same limb-vertices in strict mode, (f) the extracted tube,
(g), (h) (i) next iterations, (l) achieved segmentation at the chosen
scale.

Table 1: Plumber timings (m:s:ms) performed on an Athlon 1000
MHZ.

Model nV Vert. classif. Medial loop Tube grow

Cylinder 4038 00.26.84 00.15.45 < 1sec.
Pot (1 iter.) 14616 00.08.47 00.03.24 < 1sec.
Pot (2 iter.) – 00.13.45 00.13.50 < 1sec.
Schale 10892 00.19.65 02.25.96 < 1sec.

Shape graph Throughout the previous paragraphs we have de-
tailed a method for identifying and classifying tubes of different
size and bodies achieving a segmentation of the input object. We
enrich this geometric classification with an explicit representation
of the structure of the model which codes the relations between
primitives in a hierarchy of tubes and bodies. This structured repre-
sentation is a shape-graph whose nodes are the extracted primitive
shapes, while the arcs code the adjacency relation among the pre-
vious ones, i.e. their relative position and orientation. Each node is
a tube, whose labels are the medium radius and the axis length,
a body, whose labels are the number of holes and the approxi-
mate volume, or a cap, whose labels are the basis section, the axis
length and the curvature extrema. Each arc between two adjacent
nodes falls into one of these cases (see Figure 11): tube-body, tube-
tube, cap-tube. The tube-body or tube-tube adjacency is called H-
junction (i.e. handle-junction) if both boundaries of the tube lay on
the same body or tube respectively; in this case, the arc is a loop and
the tube locates a handle on the input object. In the case that only
one boundary of the tube belongs to the tube-body the adjacency is
called a T-junction.

Computational complexity The predominant cost of the method
is represented by the initial surface characterization [MPS∗04] to
detect limb vertices, which is O(n2

V ) with nV number of mesh
vertices. The following tube extraction procedure is much faster.
The clustering of limb vertices into regions is treated triangle-wise;
starting from a first seed triangle having three limb vertices, the
region is constructed adding neighbouring limb triangles through a
breadth-first search. The boundary computation of a region is linear
in the number of vertices of the region: all the vertices are visited,
and when a seed boundary vertex is found, the boundary loop which
it belongs to is computed moving by adjacency.

The medial loop computation is in the worst case very expen-
sive: the problem of computing the minimal distance between two
vertices can be solved by the Dijkstra’s algorithm in O(nlog(n)),
where n is the region cardinality, but in our case the minimum dis-
tance from all the boundary points takes O(n2log(n)). In practice
boundary vertices are much less than n, about n1/2, thus reducing
time complexity in the average case. The tube growing procedure
consists at each step in a triangle visit, starting from those laying on
the previous medial loop, until a triangle intersected by the sphere
is found. Each triangle inside the sphere is visited once, and the
computation of the intersection curve itself is linear in the number
of intersected triangles, determined by adjancency. So each tube
is grown in linear time with respect to the number of triangles it
includes. Timings are reported in Table 1.
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(a) (b) (c) (d)

Figure 11: (a) Centrelines on a tea-pot with respect to two levels of detail, (b), (c) Segmentation of the tea pot into cap, body, tubes and
adjacency relations, (d) shape graph.

3. Applications and Conclusions

The Plumber algorithm provides a multi-scale method to decom-
pose a complex shape into its tubular features and bodies. The seg-
mentation considers as bodies those regions that are not tubular
shaped; therefore, a sub-classification of these primitives is neces-
sary. Main difficult tasks are their identification, general configura-
tion and the identification of a basic shape for the abstraction.

The interpretation and categorization of tubular features has the
drawback of introducing heuristic thresholds to make decisions on
the tube size, or for distinguishing branching parts from compli-
cated configurations of tubes as in Figure 1, and 9. The reduction
of the influence of these parameters and the abstraction of tubular
features with generalized cylinder and cones for collision detection
applications are the further improvements of Plumber.
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