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Given a triangle mesh representing a closed
manifold surface of arbitrary genus, a method
is proposed to automatically extract the Reeb
graph of the manifold with respect to the
height function. The method is based on
a slicing strategy that traces contours while
inserting them directly in the mesh as con-
straints. Critical areas, which identify iso-
lated and non-isolated critical points of the
surface, are recognized and coded in the ex-
tended Reeb graph (ERG). The remeshing
strategy guarantees that topological features
are correctly maintained in the graph, and the
tiling of ERG nodes reproduces the original
shape at a minimal, but topologically correct,
geometric level.

Key words: Shape analysis – Reeb graph –
Remeshing – Computational topology

Research in computational topology has recently at-
tracted the attention of a broad scientific community
working in diverse fields related to shape modelling,
processing and analysis. Computational topology
deals with solving topological problems using an al-
gorithmic approach (e.g. computing the homology
groups of a given shape) as well as with solving
geometrical problems using a topological approach
(e.g. mesh simplification with guaranteed topologi-
cal correctness). Thinking of the many and emerging
applications dealing with shape processing, it is ob-
vious that there is a growing interest in the results
computational topology (Dey et al. 1999). Knowl-
edge about the global properties of a shape and its
main features is very useful for intelligent compres-
sion and transmission over the network of dense
meshes: the main features and their configuration
are important for developing a simplification strat-
egy that discards irrelevant facets without losing the
overall structure (Bajaj and Schikore 1998). Com-
putational topology tools are also extremely helpful
for content-based search in object databases: tools
for building abstract models which naturally com-
bine geometry and global shape properties are very
useful for defining high-level search keys and for
similarity assessment (Veltkamp 2001; Hilaga et al.
2001).

1.1 Motivation and previous work

In the context of computational topology, we are
mainly interested in methods to define topology-
driven skeletons of triangle meshes, which bridge the
topology and the geometry and allow a minimal ren-
dering of the complete shape while preserving the
object topology. While a computational theory of
shape is still not formalized, we believe that topol-
ogy provides the most flexible and well-founded sup-
port to devise advanced modelling approaches (Fal-
cidieno and Spagnuolo 1998). There is clear evi-
dence, indeed, that people use different high-level
(abstract or global) and low-level (detailed or lo-
cal) models for shape interpretation. This is espe-
cially relevant for the perception of complex forms,
in which the ability to vary the level of descriptive
abstraction is the key to recognizing and classifying
highly complex shapes (Pentland 1986). Methods for
extracting topological or morphological structures
from low-level object models have been presented in
many application areas dealing with complex models
whose geometry is represented by triangular meshes.
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Related work in this area has been presented by
several authors, and the most classical approach to
skeletonization is surely represented by the medial
axis, firstly introduced by Blum and Nagel (1978)
and extensively used in image processing. The me-
dial axis of a two-dimensional shape is a graph-like
structure whose nodes identify the points where the
shape branches into protrusion-like parts and, most
usefully, provides the possibility of recovering the
original shape using a simple distance transform.
Therefore, the medial axis integrates a correct repre-
sentation of the topology with a very efficient com-
pression of the shape. Unfortunately, in three di-
mensions, the structure of the medial axis contains
not only linear elements but also medial surfaces, is
more expensive to compute, and is also sensitive to
noise or small undulations on the shape boundary.
For representing three-dimensional polyhedral ob-
jects, Lazarus and Verroust (2000) propose a shape
skeleton, called a level-set diagram, given by the
level sets of a function defined, for every mesh ver-
tex, as the geodesic distance from a selected source
point. The method can be applied to unorganised col-
lections of scattered data points lying on a tubular-
shaped surface. Using the geodesic distance guaran-
tees that the resulting skeleton is invariant under rota-
tion, translation and uniform scaling, which is a very
important property. The skeleton, however, depends
on the choice of the source point and on the num-
ber of level sets used to slice the surface. In their
paper, a heuristics is used to select the source point
that seems to work well on elongated tubular shapes
such as blood vessels and bones. For this kind of
shape, skeletal lines obtained with different source
points are very similar. However, the choice of a sin-
gle source point determines a privileged direction,
which may lead to a loss of some features if the ob-
ject is not strictly cylindrical.
Morse theory, and Reeb graphs in particular, have
also been used to define effective topological skele-
tons, and they are based on the study of the criti-
cal points of a continuous function defined over the
mesh. First introduced in computer graphics by Shi-
nagawa et al. (1991), they have been used by oth-
ers for different applications (Wood et al. 2000; Hi-
laga et al. 2001; Biasotti et al. 2001; Biasotti et al.
2000a; Shattuck and Leahy 2001). The use of Reeb
graphs have initially been limited to Morse map-
ping functions and their construction required a pri-
ori knowledge of the object genus (Shinagawa and
Kunii 1991). Degenerate critical points were gener-

ally not allowed or eliminated by local perturbations
of the surface. Local perturbations, however, intro-
duce artefacts not corresponding to any shape fea-
tures, therefore leading to imprecise shape descrip-
tion. In Hilaga et al. (2001) the authors propose the
use of a mapping function based on the geodesic
distance and the resulting Reeb graph is therefore in-
variant under rotation, translation and uniform scal-
ing. The graph, constructed using a multiresolution
approach, is proposed as a tool for estimating the
difference among shapes. In order to decrease the
computational cost of the algorithm, an approximate
evaluation of the geodesic distance among the mesh
points is suggested. Unfortunately, such a function
approximation does not guarantee the absolute inde-
pendence of its values from the object orientation.
Moreover, the relationship between shape and graph
representation is not intuitive and does not seem use-
ful for visualization purposes.

1.2 Approach and results

Given a shape, its Reeb graph under the height map
can be efficiently extracted by cutting the mesh into
parallel slices, orthogonal to the considered height
direction, and by studying the properties of the re-
sulting mesh strips delimited by two adjacent levels.
Informally, areas of the sliced mesh localize sur-
face critical points when the mesh components have
only one or more than two boundary components.
A similar approach in the context of CAD surfaces
has recently been presented in Jun et al. (2001). The
topological connectivity of critical points can be re-
constructed using edge-based adjacency among con-
tours. We first developed this method for the extrac-
tion of Reeb graphs from triangular meshes repre-
senting bivariate surfaces, also called 2.5D surfaces
or height fields (Biasotti et al. 2001; Biasotti et al
2000a). Here, we present a generalization of our ap-
proach to a wider class of surfaces, in particular
closed two-manifold surfaces whose critical points
might also be degenerate, as is likely to happen when
dealing with real objects. In particular, we describe
a revised version of the algorithm presented in At-
tene et al. (2001) for the automatic extraction of the
ERG from closed and two-manifold triangle meshes.
The main difference in the presented approach is that
vertices not belonging to the contours are kept during
the remeshing step. The ERG construction changes
accordingly, mainly for the critical-area character-
ization, and by using Euler’s formula within each
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computed slice, we are guaranteed that holes are al-
ways recognized by the process.
The slicing strategy, i.e. the choice of the height
function, might be questionable, as the resulting
graph is obviously dependent on the choice of the
slicing direction. Therefore, the ERG is invariant
only under translation and uniform scaling, but not
under rotation. The main motivation of our choice
concerns the intuitiveness of the resulting shape de-
scription, which is based on the natural features used
to describe a shape, i.e. peaks, pits and passes. Beside
intuitiveness, since the nodes of the Reeb graph code
the boundary components of critical areas, a minimal
but topologically correct representation of the shape
can be obtained by a simple tiling of those compo-
nents (Biasotti et al. 2000b).
The remainder of the paper is organized as follows.
First, the theoretical background of this work is de-
scribed in Sect. 2. Then, our view of critical points
and areas with their characterization for triangle
meshes is presented in Sect. 3. The integrated mech-
anism of contour tracing and insertion is described
in Sect. 4, which produces the remeshed surfaces.
Given the retiled surface, the Reeb graph is easily
constructed and the algorithm used is presented in
Sect. 5. Results and discussions conclude the paper
in Sect. 6.

2 Theoretical background

While topology allows us to classify a shape accord-
ing to abstract properties of the space associated with
the shape (e.g. being knotted or having holes), differ-
ential topology deals with the relations among topol-
ogy and critical points of a function defined on the
shape (Guillemin and Pollack 1974; Engelking and
Sielucki 1992). In particular, Morse theory states that
the topology of a given manifold, e.g. global proper-
ties and connectivity, can be described by analysing
the critical points of a smooth function defined on
the manifold itself (Milnor 1963; Guillemin and Pol-
lack 1974). Let us consider a real-valued function h
defined on a smooth manifold M, embedded in the
usual three-dimensional Euclidean space. The crit-
ical points of h are the points of M at which the
gradient is zero, i.e. ∇(h(P)) = 0. The pre-image of
any value assumed by h, the set h−1(a), defines an
isocontour or level set (or simply contour when h is
the height function). The height function h is the real
function which associates to each point on the sur-

a b
Fig. 1. a Dotted contours represent some of the Reeb
equivalence classes with respect to the height function;
b the graph representation of the quotient space

face its elevation; that is, h(P) = h((xP, yP, zP)) =
zP , for every P ∈ M. In this case, the contours corre-
spond to the intersections of the surface with planes
orthogonal to the height direction. The height func-
tion may also be considered according to other than
the standard Z-axis direction.
A function h is called Morse if all of its critical points
are non-degenerate – that is, if the Hessian matrix H
of the second derivatives of h is non-singular at those
points. In particular, non-degenerate critical points
are isolated, therefore, surfaces with plateaux or vol-
cano rims do not comply with the definition of the
Morse function (Milnor 1963). Related to the Morse
theory, Reeb introduced a structure, called a Reeb
graph, which codes the evolution of the level sets of
the mapping function (Reeb 1946). More precisely,
the Reeb graph of a manifold M with respect to
a real-valued function h is defined as follows:

Definition: Let h : M → R be a real-valued func-
tion on a compact manifold M. The Reeb graph of
M with respect to h is the quotient space of M ×R
defined by the equivalence relation “∼”, given by:

(X1, h(X1)) ∼ (X2, h(X2)) ⇔ h(X1) = h(X2)

and X1 and X2 are in the same connected component
of h−1(h(X1)).

Intuitively, all points of a compact manifold having
the same value under the real function h and whose
pre-image belongs to the same connected component
are collapsed into one element. Since the contour
topology changes only in correspondence of critical
levels of the function, the Reeb quotient space can
be described as a graph (Milnor 1963; Fomenko and
Kunii 1997) (see Fig. 1).
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a b c

Fig. 2a–c. Characterization based on the method presented in Edelsbrunner et al. (2001) for a “quasi-smooth” triangula-
tion (a) and for two real surfaces (b,d). Detail of the critical point distribution is also shown (c)

In the Reeb graph, the nodes correspond to critical
points of the function h, and the arcs represent the
connection between them. Morse theory guarantees
also that the topology does not change along the arcs.
In applications related to polyhedral surfaces, tradi-
tional approaches to the detection of critical points
are mainly based on comparing the function value at
each vertex with the function value at each of its di-
rect neighbours (Banchoff 1970). This approach is
local and therefore very sensible for small changes
in vertex location. For example, the Morse com-
plex decomposition proposed in Edelsbrunner et al.
(2001) should correctly analyse and simplify piece-
wise linear two-manifolds. Specifically, the authors
extend to piecewise linear manifolds some smooth
notions of the Morse theory. For instance, Morse
complexes are defined using a simulating differen-
tiability method. Critical points are defined as an
extension of the Banchoff’s criterion, which consid-
ers also degenerate saddle points, such as monkey
saddles. Starting from critical points, quasi-Morse
complexes are constructed by following approximate
integral paths on the surface, which form a kind of
network on the surface, and by introducing a mea-
sure of the importance among critical points, the
structure obtained is proposed for mesh understand-
ing and simplification with results shown for digital
terrain models. This work may be viewed as an ex-
tension to discrete surfaces of the analysis described
in Nackman (1984) for smooth surfaces, which pro-
vided a surface decomposition into slope districts,
and further extended to describe curvature districts
in Nackman and Pizer (1985). Morse complexes are
also related to the topological networks called sur-
face networks, presented in Pfaltz (1990). Takahashi

et al. (1995) showed how to transform such a net-
work into a Reeb graph.
This approach behaves well only in case of “quasi-
smooth” surfaces (see Fig. 2a) but the effectiveness
of the description obtained decreases in the case
of real data, such as with terrain surfaces. In other
words, it is hard to distinguish between global and
local shape features without further analysis (see
Fig. 2b,c).
By considering the surface behaviour in larger por-
tions of surface, those bounded by the slicing planes,
problems due to locality can be avoided. In other
words, the slicing frequency filters away critical
points, i.e. features, which correspond to small-scale
details of the shape.

3 Triangle mesh characterization

Given a triangular mesh T representing a single-
sided two-manifold surface without boundary, we
want to compute a topological graph G with the same
properties as the Reeb graph of T mapped with re-
spect to the height function h. Similar to the smooth
case, the nodes of G should correspond to the criti-
cal points of h(T). Moreover, we are willing to define
the Reeb graph so that h is just a continuous func-
tion without restriction to the Morse height function.
This graph is the extended Reeb graph (ERG), which
was fully defined for graph surfaces in Biasotti et
al. (2000a). With respect to previously reported use
of the Reeb graph, the extension represented by our
ERG concerns the definition of critical points: we
propose, in fact, to fully consider degenerate config-
urations which usually are forbidden or handled with
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Fig. 3. Critical and regular areas of the constrained trian-
gulation: r1 and r4 are critical areas, locating respectively
a saddle and a maximum, while r2 and r3 are regular ones

local perturbations. Basically, the idea is to locate
critical areas within which a critical point occurs and
identify, starting from them, the smallest area on the
mesh whose behaviour is topologically equivalent to
the critical point (the influence zone of the critical
point). Influence zones are the key to identifying the
portion of the mesh contributing to the definition of
Reeb graph arcs.
With reference to Fig. 3, the method works as fol-
lows. Let us consider a closed interval [hmin, hmax] ⊂
R of the real line containing the image of T un-
der the mapping h. After fixing the required num-
ber of slicing planes, N , we insert the contour lines
h−1(hmin + n ∗∆h) in T , for n = 0 . . . N and ∆h =
(hmax − hmin)/N . Let us now call T ∗ the mesh de-
fined as the triangulation T constrained to the com-
puted contours; that is, the edges of T ∗ never cross
a contour line. The insertion of the contours decom-
poses T ∗ into a set of connected regions, each located
between two adjacent levels, and whose boundary
edges belong to a contour. The number of connected
components in the boundary of these regions and
their elevation difference allows us to distinguish be-
tween regular regions and critical ones, the latter
containing critical points of the function h. More
precisely, if a region has only one or more than
two boundary components, then it is classified as
critical; otherwise, if the two boundary components
have different elevations, the region is regular. In
Fig. 3, examples of critical and regular regions are
shown.

Critical regions with only one boundary component
contain either a minimum or a maximum critical
point, which can be easily decided by checking the
value of h immediately outside the region – that is,
by checking the ascending and descending directions
on the surface across their boundary.
A region with two boundary components at the same
elevation identifies either a degenerate critical area
of the height function, or handle-like maximum or
minimum critical point (see Fig. 4a,b). The distinc-
tion between the two cases is done by checking
the inclusion relationship between the components.
Critical regions with more than two boundary com-
ponents may locate saddle points (see region r1 in
Fig. 3), or maximum or minimum areas. Again, the
classification is easily done by checking the be-
haviour of the surface across the region boundary:
if all the connected components have ascending di-
rections then the area correspond to a minimum; if
all the connected components have descending di-
rections then the area correspond to a maximum; oth-
erwise, it is a saddle. For maxima and minima, it is
again possible to distinguish between degenerate and
handle-like situations by considering the inclusion
relationship of the contours in the corresponding
slicing plane. In particular, only two configurations
can happen: if one boundary component contains all
the others, then the region represents a degenerate
area (see Fig. 4c); otherwise, it is a handle-like criti-
cal area.
According to classical results of differential geom-
etry, the influence zones of saddle points may be
also regarded as the areas on T where the topologi-
cal change of the surface occurs, when the surface is
analysed at the chosen frequency. Note that all criti-
cal areas may contain degenerate critical points, i.e.
non-isolated ones, and that influence zones may con-
tain more than one isolated critical point at the same
elevation; that is, they may locate non-simple critical
points.
The adopted characterization criterion is obviously
dependent on the frequency of the slicing process:
if the frequency is too low, we might lose some im-
portant features, such as small holes completely con-
tained within two adjacent slices. It is easy, how-
ever, to detect these situations and adapt the fre-
quency to the feature size simply by using the Eu-
ler formula for each region. The number of through
holes h in a region R is given by h = (E − V − T +
2 − b)/2 where E, V , T are the numbers of edges,
vertices and triangles in R respectively, and b is
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Fig. 4. a Degenerate maximum critical area. b Handle-like max-
imum with two boundary components. c Degenerate maximum
delimited by three contours
Fig. 5. The hole is missed if too few sections are considered in
the slicing process

the number of boundary components of R (Mäntylä
1988).
Handle-like critical areas also occur due to a large
slicing frequency, which does not allow detecting
the saddle point contained within the slice. In this
case, however, there is no loss of information and the
topology of the mesh is still correctly represented in
the ERG. Degenerate and handle-like critical areas,
indeed, are associated with macro-nodes in which
the correct link to the adjacent cells is stored (see
Sect. 5). In the last section, some results will be pro-
vided showing the behaviour of the characterization
for different frequencies.

4 Remeshing strategy
for constraint insertion

The use of the triangulation constrained to contours
makes it easy to compute efficiently the ERG of the
mesh. In order to extend the approach described in
Biasotti et al. (2000a, 2001) to generic two-manifold
triangulations without boundary, it is necessary to
ensure that contours are properly inserted as con-
straints in the mesh. With regard to the contour ex-
traction, plenty of algorithms can be found in the
scientific literature, mainly designed for GIS appli-
cations and generally developed for 2.5D meshes,

i.e. scalar fields (Bajaj et al. 1996; Livnat et al. 1996;
Van Kreveld 1994).
In our context, since the contours have to be in-
serted as constraints, a method has been imple-
mented which computes contours and inserts them
in the mesh in a single step. To start the process,
only the number N of parallel planes to be inter-
sected with the mesh T is required. For simplicity,
the contours are always considered parallel to the
XY -plane of the coordinate system in which T is rep-
resented. A rotation of the whole mesh is performed
for computing the slicing in any user-defined direc-
tion. At each level, the intersection of the mesh with
the corresponding plane is represented by a set of
closed connected components. Intersections at crit-
ical levels might produce degenerate contours, such
as single points or non-simple contours. To avoid
these critical intersections, in particular with supe-
rior and inferior extremes of T , the distance among
planes is slightly adjusted locally. This can be done
because the ERG extraction algorithm does not need
the contour levels to be equidistant and is consistent
with our definition of the influence zone of critical
points. Therefore, inserting all the resulting con-
nected components for each level, as explained in the
following, fully solves the problem.
Since the triangulation represents a closed surface,
it is possible to track and insert each contour level
in a quite simple way, with basic operations involv-
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ing only the adjacency relations stored in the data
structure. More precisely, for each plane Πi corre-
sponding to a given elevation zi , we define a list L
containing the edges of T that have a non-empty in-
tersection with Πi . Note that an edge with one of its
vertices on the plane is considered to have a non-
empty intersection with it. The first element of L
is chosen as the first seed for computing a contour
component, and during the loop, processed edges are
marked. Once the tracking of this first component
is complete, the list L is scanned until an unmarked
edge is found. If such an edge exists, then it is used
as the starting edge to insert a new connected compo-
nent. The described process is repeated until the list
L contains only marked edges. Each connected com-
ponent is inserted starting from the seed and tracking
the contour vertex by vertex. Vertices may be either
vertices of T already lying on the contour, or they
have to be created every time there is an intersection
between an edge and the plane. In this latter case, the
mesh is locally updated with the insertion of the ap-
propriate number of new triangles and edges, and the
local adjacency relations are updated as well. From
this process, a sequence v0, v1, . . . , vk of vertices is
obtained such that an edge of T exists for each pair
(vi, vi+1), as well as for (vk, v0). Specifically, at each
step of the contour construction an active vertex v is
defined; the next vertex is searched by analysing the
edges in VT(v), the set of the triangles adjacent to v.
Only one of these two situations may occur:

1. There exists one edge e in VT(v) that entirely lies
on the plane. The next vertex of the contour will
be the other vertex of e, which becomes the cur-
rent vertex; all the edges incident in v are marked
as visited.

2. Otherwise, the next edge to be processed is the
edge e in VT(v) that intersects the plane, is not ad-
jacent to v and is not marked as visited. In this
case e is split at the intersection point p, where
the next vertex v is created, and the local geome-
try and topology is updated. The new vertex and
all its incident edges are marked as visited.

The process starts at the seed edge, which satisfies ei-
ther one of the two situations described above, or it
has only one vertex on the plane. In this latter case,
the intersection vertex will be defining the first active
vertex.
The process is recursively repeated for each new ex-
tracted edge until it is impossible to get a next edge.
The algorithm is described in Fig. 6, with a simple

a b

c d

Fig. 6. Inserting a connected component onto a tetrahe-
dron

tetrahedron as the starting mesh (a). In the first step,
the new vertex is inserted at p0, and the next edge se-
lected is e1 (b). e2 could also have been selected as
the next edge, depending on the order with which tri-
angles are stored in the VT(v) relation of the new ver-
tex. In this case, the contour would have been traced
in the opposite direction. Then, the next new vertex is
inserted at p1, and the next edge processed is e2 (c).
Finally, the last new vertex is inserted, and the pro-
cess terminates because all the edges of the influence
polygon are marked as visited (d).

5 ERG construction

The ERG derives from the direct application of the
Reeb graph definition to T ∗ and allows us to con-
sider a broader class of surfaces than the ones used
in other applications of Reeb graphs. Based on these
concepts, the nodes of the ERG are defined by simple
nodes, which correspond to influence zones of sim-
ple critical points, and by macro-nodes, which are
used to represent complex ones, i.e. degenerate and
handle-like areas. Starting with the identification of
the influence zones of critical points, the arcs of the
ERG are detected with a simple criterion of topo-
logical expansion which connects them on the mesh
T ∗. The degree of each node is equal to the number
of boundary components of the associated influence
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Fig. 7a,b. Adaptive contouring of the mesh in Fig. 5: a the hole is detected by halving the contouring step; b the consequent
characterization
Fig. 8. a The original surface. b The first step of the ERG construction. c The final one

zone. Notice that simple nodes of type maximum and
minimum will always have degree one.
First of all, the regions on T ∗ delimited by two adja-
cent levels are detected with a simple region-growing
algorithm which starts from a triangle t and expands
the region without crossing any constrained edge. At
each step of the growing process, the current bound-
ary is updated and possibly divided into more than
one connected component if the region being con-
structed is multiply connected. The growing process
stops when all edges of the current boundary lie
on contours; that is, they are all constrained edges.
At the same time, counters for computing the Eu-
ler formula are also updated so that at the end of the
growing process both the number of boundary com-
ponents and genus of the region are available: if the
region contains a hole, then the slicing insufficiently
samples the mesh and a more dense distribution is
chosen (see Fig. 7); otherwise, the region classifica-
tion is done according to the criteria described in
Sect. 3.
With the extraction and classification of influence
zones of critical points, the set of nodes of the ERG
is completely defined. Each node codes the label of
the critical area and its boundary components. At
the first stage, we try to connect the nodes of degree
one, if any, to their adjacent cells (see Fig. 8b). This
is done by expanding the influence zones of sim-
ple maximum or minimum areas until the boundary
of another influence zone is reached. At the second
stage, the missing links between saddles and com-
plex areas have to be determined. Again, the arcs are
determined by expanding the influence zones but this
time the expansion follows only the free ascending
directions of its boundary – that is, directions that

do not correspond to arcs already identified. When
a free ascending direction is connected to another
region, then one arc is defined between the starting
node and the reached one (see Fig. 8c). The ERG
construction ends when all influence zones and all
their free ascending directions have been checked.
Some comments can be made. First of all, since
we use the height function to map the surface
shape, the extracted ERG depends on the orien-
tation of the height direction. Anyway, the global
topology of the shape is captured by the ERG,
and as presented in Biasotti et al. (2001), the cod-
ing of critical areas in the ERG still verifies the
Morse relation # max −#saddle+ # min = χ. This
can be proven considering that within each slice
we are guaranteed that the Euler characteristic of
the slice is 2, since there are no holes. There-
fore, the contribution of each critical area is given
by 2 − b, where b is the number of its boundary
components.
The dependence of the ERG on the orientation
makes it obviously unsuitable for shape classifica-
tion or recognition, activities which require unique
models for shape description. Nevertheless, it is im-
portant to underline that the ERG provides a topo-
logical framework for the construction of morpho-
logical skeletons, and it has been shown in Biasotti
et al. (2000b) that the ERG can be effectively used to
render the topology of a shape at a minimal level of
detail.
Another important point concerns the density of
the sweeping planes, which determines the scale at
which shape features are detected. The guarantee to
detect all critical points is given by choosing to slice
the mesh at each value assumed by h(v), for every
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Fig. 9. The ERG extraction process applied to the phone handset
Fig. 10. Examples of extraction of the ERG from the Santa Claus
model with various section densities

vertex v of T . Following this criterion, it is neces-
sary to compute a number of sections larger than the
effective features of the surface, and the characteri-
zation would converge to the one proposed by Ban-
choff (1970). A similar approach has been proposed
in (Carr et al. 2000) for computing their contour
trees. To prune away irrelevant features, Edelsbrun-
ner et al. (2001) propose a first characterization of
the triangulation and then the computation of the
minimum distance among the features obtained. Our
approach guarantees that holes are preserved, with
their corresponding critical points, while we allow
losing some maximum or minimum points whose
amplitude with respect to the slicing direction is
smaller that the chosen frequency. Actually, some of
these small maximum or minimum points might be
still recognized, if they are not completely contained
within a slice. Moreover, the idea proposed in Kulka-
rni and Dutta (1996) of considering a non-uniform
slicing of the triangulation also surely improves our
algorithm.

6 Results and discussion

Based on the described techniques, a prototype sys-
tem has been implemented which performs the con-
tour computation and insertion, and the Reeb graph
extraction. The original mesh can be swept along
any user-defined direction and with arbitrary num-
ber of sections. The whole process is depicted in
Fig. 9, where the original mesh is shown in (a) and
the mesh after the contouring step is shown in (b).
The critical areas are depicted in (c) with a colour-
ing scheme which associates the blue colour to
minimum areas, the red to maxima, and the green
to saddles. Finally, the resulting ERG is shown
in (d) with the boundary contours of the critical
areas.
Figure 10 shows the ERG extraction on some ex-
amples with various sampling steps. Notice that as
the section density increases smaller topological fea-
tures are detected.
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Fig. 11. Extraction of the ERG from a model with 9 through holes
with various section densities and directions
Fig. 12. The ERG for shape compression: a the mesh characteriza-
tion; b its ERG graph, and the mesh reconstructed only from the
critical sections and their relations given by the ERG

Figure 11 shows how changing the slicing direction
and density does not change the number of cycles in
the computed ERG.
The global complexity of the remeshing algorithm
can be given as a function of the maximum value
between the number of vertices of the original trian-
gulation, n, and the number of the constrained ones,
m. Moreover, it can be seen that the number of edges
and triangles are of the same order as the number of
vertices. In the slicing step, the edge-ordering pre-
processing requires O(max(m, n log n)) operations.
Then, O(n log n) operations are needed to sort the
edges, and O(max(m, n)) is the number of intersec-
tion tests. Inserting the whole set of constraints re-
quires O(m) edge splits.
With regard to the computational complexity of
the ERG extraction, the recognition of critical ar-
eas and the detection of influence zones require
O(t) operations, where t is the number of trian-
gles. The complexity of the arc completion step is
expressed by O(t), so that the total computational

cost of the ERG extraction is O(m log m). There-
fore, the whole process, starting from a generic
triangulation, requires O(max(m log m, n log n))
operations.
As shown in Fig. 12, the ERG structure is not
only an abstract topological description; the visu-
alization of the ERG contours and their adjacency,
in fact, provides a simple and effective sketch of
the original shape. With reference to Fig. 12, the
shape of the original surface can be restored us-
ing contour-blending techniques, especially if the
ERG is augmented with more sections along the
arcs that identify significant changes of the con-
tour shape. In this sense, we are currently working
on the use of the ERG as the reference structure
to compress and decompress shape models (Bia-
sotti et al. 2000b). Notice that, while the Reeb graph
is dependent on the orientation of the height func-
tion, the restoring process produces the original
shape with the correct topology independently of the
orientation.
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Future developments of this method mainly con-
cern the definition of a morphological structure to
be merged with the ERG, which codes also the
main morphological changes among contours. From
a theoretical point of view, we are also investigating
a possible limit to the number of configurations of
the Reeb graph of a given shape.
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