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1.1. Introduction 

Knowledge about the global properties of a shape and its main features is very useful for the 

comprehension and intelligent analysis of large data sets: the main features and their configuration 

are important to devise a surface understanding mechanism that discards irrelevant details without 

loosing the overall surface structure. As far as terrain surfaces are concerned, it is also important 

that a description captures important topographic elements, such as peaks, pits and passes, which 

have a relevant semantic content and, at the same time, are formally well-defined. Critical points 

and their configuration, indeed, and the related theory of differential topology give a suitable 

framework to formalise and solve several problems related to shape understanding. Computational 

topology techniques provide several tools and measures for surface analysis and coding [8]: Euler's 

equation, Morse theory, surface networks or Reeb graphs, for example, provide highly abstract 

shape descriptions, with several applications to the understanding, simplification and minimal 

rendering of large data sets. 

Obviously the best shape descriptor does not exist, and each gives a specific view of a shape. For 

example, surface networks give a region-oriented description of a terrain, which can be seen as 

decomposed in patches having their vertices at critical points, Reeb graphs, conversely, give a 

volume-oriented description in which hills and dales are represented explicitly together with their 

elevation-based adjacency relationships. 

To use topological approaches in a computational context and for discrete surfaces, it is necessary 

to adapt to discrete surface models concepts developed for smooth manifolds, such as piecewise 

linear approximations. In this chapter the notion of Extended Reeb Graph (ERG) is introduced; it is 

based on a characterisation strategy, which defines critical points and areas by analysing the 



evolution of the contour levels on a shape, including also the so-called degenerate configurations. 

An algorithm for the construction of the ERG extraction is also proposed.  

The reminder of this chapter is organised as follows: first, an overview of the definition of critical 

points and Morse complexes for smooth manifolds is given; then, topological structures used for 

the analysis and simplification of triangular meshes are described focusing on surface networks and 

Reeb graphs; the characterisation, based on a surface slicing approach, and the ERG representation 

are presented in section 1.3; finally, in section 1.4, an algorithm for implementing the 

characterisation and the ERG extraction from triangular meshes is presented together with several 

examples; discussions and conclusions end the chapter. 

1.2. Background: differential topology for surface characterisation  

Theoretical approaches based on differential topology and geometry give complete answers to the 

problem of understanding and coding the shape of scalar fields. In general, the configuration of the 

critical points gives sufficient information to fully characterise the surface shape with diverse 

formal codings, which highlight slightly different properties of the surface. The best example is the 

Morse theory, which sets the background for surface networks and Reeb graphs, both being 

effective tools for coding the surface shape. In this section, some topological techniques for surface 

shape descriptions are introduced, which propose different organization and coding of the 

relationships among the surface features, focusing on the Reeb graph representation [18], [19]. 

1.2.1. Morse theory 

Morse theory is a powerful tool to capture the topological structure of a shape. In fact, Morse 

theory states that it is possible to construct topological spaces equivalent to a given differential 

manifold describing the surface as a decomposition into primitive topological cells, through a 

limited number of information [10], [15]. 

Formally, let M be a smooth manifold, that is a space for which each point has a neighbourhood 

locally homeomorphic to the open unit ball Bn in ℜn, and let f: M → ℜ be a real smooth function 

defined on the manifold M, whose critical points are those where the gradient is zero. Then, the 

following definition is given: 

Definition 1 (Morse function): 

The function f is called a Morse function if all of its critical points are non-degenerate, where a 

critical point is non-degenerate if the Hessian matrix H of the second derivatives of f is non-

singular at that point. 



It follows that a Morse function has to be at least C2. Non-degenerate critical points are isolated, 

and, in a neighbourhood of each critical point P, the function f can be expressed in a local 

coordinate system as   f = f (P) − (y1)
2 −K− (yλ)2 + (yλ +1)

2 +K+ (yn )2 , where λ is called the index 

of f in P and it represents the number of negative eigenvalues of the Hessian matrix in P. 

Additional details can be found in [9], [10] and [15].  

In the case of terrain surfaces, which are modelled by single-valued functions, the reference 

manifold M is a two-manifold with boundary, where all points, except those along the boundary, 

have a neighbourhood homeomorphic to a sphere of dimension 2, that is to a disk. Points on the 

boundary have a neighbourhood homeomorphic to a half-disk. 

Isolevels, i.e. subsets of M having the same value of f, can also be used to describe the surface 

shape. Isolevels are also called contours or level sets. The topological changes in the isolevel 

configuration, that is contour splitting or merging, only occur in correspondence of critical points of 

f. In Figure 1 examples of critical points are shown together with the projection of the surface 

isolevels in their neighbourhood. This property can be easily extended to degenerate critical points 

such as the monkey saddles and, in a broader sense, to flat regions; in particular, Figure 1(c) and 

Figure 1(d) highlight two degenerate situations, a monkey saddle and a volcano rim respectively. In 

Section 1.3, we will see how the evolution of isolevels on a manifold M is used to define the Reeb 

graph of the manifold. 

 

Figure 1 The behaviour of the contour levels around a maximum (a), a saddle (b), a monkey saddle (c) and a 

volcano rim (d). 

 

Critical points are classified as maxima, minima and saddles, according to the behaviour of the 

function f around them: all the outgoing directions from a maximum (resp. minimum) point are 

descending (resp. ascending), while a saddle alternates at least two ascending and two descending 

directions. 

In addition, given a Morse function f, a smooth manifold without boundary satisfies the so-called 

Euler formula, which states that the number of non-degenerate maximum (M), saddle (p) and 

minimum (m) points verifies the relation M - p + m = 2(1-g) = χ, where g represents the genus of 

the surface and χ is called the Euler characteristics of the surface. However, considering the right 



contribution of each critical point, this relation can be extended to the degenerate ones, as shown in 

[1] and [5]. 

Among all the possible Morse functions, the height function, that associates to each surface point 

its elevation, may be effectively used to study the surface shape in the Euclidean space. In 

particular, the level sets of a height function associated to a surface are the intersections of the 

surface with planes orthogonal to a given direction.  

In [3] Banchoff presented a full framework which may be regarded as the discrete counterpart of 

the Morse theory, where critical points and their relationships are formally defined for triangle 

meshes. A basic assumption of this approach and its derived applications [2] and [11] concerns the 

behaviour of the scalar field at the vertices of the triangle mesh, since adjacent vertices, i.e. vertices 

joined by an edge, are required to have different field values. This hypothesis is needed to avoid the 

typical problem represented by degenerate critical points, that is non-isolated critical points such as 

plateaux and flat areas of the surface. Methods proposed in the literature usually do not consider the 

problem, delegating the solution of problematic cases to local adjustments or perturbations. This 

strategy, however, while solving theoretically the problem can lead to a wrong interpretation of the 

shape by introducing artefacts, which do not correspond to any shape feature. Also, many of the 

proposed computational approaches suffer from numerical instability since many degeneracies 

occur in real situations. 

1.2.2. Surface networks 

As Maxwell already guessed [14], critical points play a fundamental role for fully understanding 

the global topology of a shape. Topological networks, which code the relationships among the 

critical points, have been extensively studied; in particular surface networks have been proposed by 

Pfaltz [17] for the analysis of geographical surfaces. Such structures code in a graph the relation 

among the critical points of a surface, which are joined in the structure if there is an integral curve 

connecting them, i.e. a curve everywhere tangent to the gradient vector field. Integral curves 

originate from a critical point and flow to another critical point, or boundary component, and 

follow the maximum increasing growth of the height function, hence they cannot be closed (nor 

infinite) and do not intersect each other except at the critical points. In practice integral curves 

originate from each minimum in every directions and converge either to a saddle or a maximum, 

while only a finite number of integral curves can start from a saddle point. 

Nackman in [16] introduced the idea of critical point configuration graph. Under the hypothesis 

the height function is Morse he demonstrated that a surface network can assume only a finite 

number of configurations on the surface, which induce a surface subdivision into zones of constant 



first derivative behaviour, the so-called slope-districts. In particular, the slope districts are 

classified into four classes only. Then, the surface networks can be represented through a limited 

number of primitives, whose nodes are the critical points and whose arcs are detected through the 

steepest ascending directions on the surface.  

For applications of the surface network framework to the GIS context see this book, part III. 

1.2.3. The Reeb graph 

In this chapter we are focusing on the approach proposed by Reeb to code the evolution and the 

arrangement of isolevel curves [18]. In the general case, the Reeb graph of a manifold M under a 

mapping function f is defined as follows. 

Definition 2 (Reeb graph)  

Let f : M → ℜ be a real valued function on a compact manifold M. The Reeb graph of M with 

respect to f is the quotient space of M xℜ defined by the equivalence relation ‘~’ given by: 

(X1, f(X1)) ~ (X2, f(X2)) ⇔ f(X1) = f(X2) and X1 and X2 are in the same connected component of    

f -1(f(X1)). 

Therefore, the Reeb graph of M collapses into one element all points having the same value under 

the real function f and being in the same connected component. Moreover, since the topological 

changes of the level sets occur only in correspondence of critical points, the Reeb quotient space 

can be effectively represented as a graph structure: a node is defined for each critical level of f, 

which corresponds to the creation, merging, split or deletion of a contour, that is, to topological 

changes affecting the number of connected components in the counterimage of f; at each node, a 

number of arcs is defined corresponding to the number of connected components of the 

counterimage of  f, each joining two successive critical levels in their own component. If an arc 

joins two nodes, n1 and n2, then the topology of isolevels on M between the height levels n1 and n2 

does not change along the connected component of M joining the corresponding critical points. 

Therefore, the Reeb graph of M under the height function f can be defined as 

RGf(M)=(Pf(M),Af(M)), where the node set is defined by Pf(M) = {Pi ∈M, Pi is a critical point of 

f(M)} and the arc set Af(M) is defined as stated before.  

The arcs of RGf(M) can be oriented according to the increasing value of the height function f, that 

is, if a=(n1, n2) is an arc of the graph, then f(n1) < f(n2). Since the arcs of RGf(M) are oriented, none 

oriented path of RGf(M) can start and end at the same node, hence the Reeb graph is a-cyclic. 

Moreover, if f is Morse, the nodes have at most degree three. 



With regard to terrain surfaces, these are mathematically modelled as scalar fields h : D ⊆ R2 → R  

such that h : x, y( )→ z = height(x, y). In this case, the manifold is defined by the points in 

M = P ∈ R3 / P = (x,y,h(x,y)){ } and the height function f is naturally defined over M as 

f (P) : M → R  such that f (P) = f ((x, y,h(x,y)) = h(x, y). Terrain surfaces are therefore represented 

by scalar fields with boundary, but the Reeb graph can be always defined by adding a minimum to 

the set of critical points, which virtually closes the surface and makes it homeomorphic to a sphere, 

as shown in [4], [20] and [22]. Reeb graphs of terrain surfaces can be always represented as trees, 

where the root is given by this virtual closure of the surface. 

The Reeb graph of a terrain surface M, under its natural height function, codes the shape of M in 

terms of the critical points of f, which are associated to meaningful topographic features, i.e. peaks, 

pits or passes, structured into a topologically consistent framework.  

In Figure 2(a) the points drawn on the manifold represent the equivalence classes of an elementary 

terrain surface with respect to the height function. In Figure 2(b) the Reeb's quotient space is 

represented as a traditional graph where the equivalence classes are grouped into arcs. 

Since the choice of the height function depends on the surface embedding, a manifold admits 

different Reeb graphs; however, this is not a problem for terrain surfaces which have a natural 

privileged direction.  

Since the Reeb graph is not limited to scalar fields but it is really useful for analysing surfaces of 

arbitrary topology, it might be also extended to represent more general terrain surfaces having also 

vertical walls or cavities. 

 

Figure 2 Reeb equivalence classes (dotted lines) (a) and Reeb graph (b) of a simple surface. The introduction of a 

virtual minimum makes the surface topologically equivalent to a sphere. The dark regions in (c) are critical 

areas, the white are the ‘regular’ ones. In (d) the regions R1, R2 and R3 and their boundary components are 



highlighted; the capital labels indicate the contours of C(M) and the small ones are portions of the surface 

boundary. 

1.3. Generalised surface characterisation 

As shown in section 1.2, knowledge about critical points is crucial for understanding and 

organizing the topological structure of a surface. Unfortunately the hypothesis that a surface is only 

continuous does not guarantee that the associated height function is Morse, neither derivable. 

Moreover, it would be desirable to distinguish among small details and relevant features of the 

surface, especially when dealing with rough surfaces as terrains. Many of the existing approaches 

to the characterisation of discrete surfaces use local point-wise criteria to detect and classify critical 

points: for example, triangle meshes are analysed in [3], [7], [11] and [20] by checking the height 

difference between a vertex and the adjacent ones in its star-neighbourhood, and by producing a 

topological coding, which is an adaptation of the surface network structure to piecewise-linear 

surfaces. Two drawbacks can be identified: first, these methods rely on the hypothesis that all edge-

adjacent vertices have different height; second, the number of the detected critical points is usually 

very high and pruning or simplification steps are necessary to make the resulting structures 

understandable. 

Our aim is to faithfully represent the surface topology and shape, without any height shift at surface 

vertices, by using an extended characterisation, which can handle degenerate as well as non-simple 

critical points and can be tuned to filter small features. Our approach is based on the use of 

contours for characterising the surface shape and constructing a topological structure, the Extended 

Reeb Graph, which represents the configuration of the critical areas of the surface. This extended 

characterisation is a generalisation of our previous work, see [4] and [5], in terms of both 

characterisation definition and algorithm for the extraction of the Reeb graph. Our approach is also 

similar to the method proposed in [13] for supporting the computation of intersections between 

parametric surfaces. 

1.1.1. Definition of critical areas 

A terrain surface M is characterised by sweeping slicing planes along the height direction and 

analysing the configuration and topological changes of the resulting isoleveles, or contours. These 

contours decompose M into a set of regions, whose boundaries contain complete information for 

detecting critical areas and for classifying them as maximum, minimum and saddle areas. For 

example, if a contour does not contain any other contours and its elevation is higher than the 

successive one, then it identifies a maximum area. Our generalised characterisation corresponds to 

the localization of these critical areas on M, aimed at region-oriented rather than point-oriented 



classification of the behaviour of M. All subsets of M defined by counterimages of critical values of 

f will be considered critical areas of M and they can be points, lines and regions. 

Since terrain surfaces are surfaces with one boundary, it is also necessary to give a unique 

interpretation of the critical points on the boundary. This is achieved by the insertion of a global 

virtual minimum point, so that the outgoing directions from the surface boundary are only 

descending and M is virtually closed.  

As shown in section 1.2 there is a tight correspondence between the existence of critical points, or 

areas, and the evolution of the height contours on the surface. The use of height contours has also 

an inherent and efficient filtering effect, which is related to the frequency or distribution of the 

slicing planes.  

While the filtering effect will be discussed later in this section, we will assume for now that the 

variation interval [fmin, fmax] of the height function is uniformly sliced with np planes, at a distance 

dp between them. The relationship between np and dp is: np = (fmax - fmin)/dp, and the first plane is 

located at the height value fmin + dp/2. Moreover, we will consider that all contours are non 

degenerate, that is the slicing planes are never tangent to M. Details on the implementation aspects 

are given in section 1.4. Let C(M) be the set of the resulting contour levels of the surface M, 

without any specific ordering. Each contour is either a simple closed line or an open line with the 

end points on the surface boundary BM.  

The contours in C(M) fully decompose the surface M into sub-regions, which correspond either to 

critical or regular areas. Let BM(R) be the boundary of a region R and bb the number of its 

connected components; in general a connected component of BM(R) may be either a closed contour, 

or it may be composed by a connected and closed sequence of open contour lines and BM parts. 

Note that in this latter case, if this type of component exists, then it is only one corresponding to the 

external boundary component of the region R. Therefore, the boundary of a region R on M is 

defined by   BM (R) = B1 UB2 ULU Bn Ub1 ULUbk  where Bi ∈ C(M) and each bj is a portion of the 

surface boundary, BM. Obviously, the boundary components  b1 Ub2 ULUbk  are missing when the 

region does not intersect BM, that is, the sub-region R is fully contained within the surface domain.  

According to the definition of contours, if an element of C(M) intersects a region R then it has to be 

completely part of its boundary BR(M). If the region R intersects the surface boundary BM then the 

external component of BR(M) is a closed sequence of open contours connected among them through 

bj components, as shown in Figure 2(d). With reference to Figure 2(d), the boundary components of 

R2 are made of the ordered sequence union b2, B4, b4, B3, b3, B2 and the boundary component B6; 

in this case bb is equal to two. In particular, with reference to the region R2 the Bi components 

correspond to B2, B3, B4 and B6, while the bj ones are given by b2, b3 and b4.  



A generic region R of M is classified according to the number and behaviour of its boundary 

components. Since the interior of any region R is well-defined, it is possible to associate so-called 

outgoing directions to each component of BR(M), which are needed to classify the region type. In 

particular, to all closed components of BR(M) only one outgoing direction is associated, while to the 

component intersecting BM, if any, one outgoing direction is associated to each composing part. 

Each outgoing direction is classified as ascending or descending according to the behaviour of f 

across the corresponding boundary component. If the f value decreases (resp. increases) walking 

from the inside towards the outside of the region through the boundary component Bi, then the 

associated outgoing direction is descending (resp. ascending). The existence of the virtual 

minimum, indeed, does not alter  the surface characterisation but implies that, during the 

classification process, each boundary component bj has to be considered as a descending direction.  

Given a region R and its boundary BR(M), the following classification scheme is adopted: 

- R is a maximum area iff all the outgoing directions from BR(M) are descending, see Figure 3; 

- R is a minimum area iff all the outgoing directions from BR(M) are ascending and BR(M) does 

not intersect the surface boundary, that is, k=0, see Figure 3(c); 

- R is a saddle area iff either k=0, bb>2 and there are both ascending and descending outgoing 

directions from BR(M), or k>0 and BR(M) verifies at least one of the following conditions, 

(see Figure 3(a,b)):  

a. bb=1 and there are at least two ascending outgoing directions;  

b. bb>1 and at least one of the open boundary components Bi∈BR(M) has an outgoing 

ascending direction; 

- finally, R is called regular iff  it does not belong to the previous categories, see Figure 2(c).  

With reference to Figure 2(c), the dark regions represent three critical areas, while the white ones 

correspond to regular areas. In addition to the previous classification scheme, a further distinction 

between simple and multi-connected minimum and maximum areas is done: simple critical areas 

are minima (resp. maxima) that correspond to a simply-connected region and complex the other 

ones. Moreover, due to the assumption that all the outgoing directions across the surface boundary 

BM are descending, minima cannot be adjacent to BM, and in this sense the classification of minima 

and maxima is not fully symmetrical. In particular, the dark regions of the image in Figure 3(a) 

represent critical areas. which do not belong to the boundary surface, while the regions in Figure 

3(b) do.  



 

Figure 3 Maximum and saddle characterisation for regions non-intersecting (a) and intersecting the surface 

boundary. In (c) a minimum and a non-simply connected maximum are presented. 

 

Let us now discuss the relation between the distribution of slicing planes and the size of the 

features detected. First of all, for terrain surfaces, the notion of size can be associated only to 

maximum and minimum areas, either simple or complex, and it corresponds to the height 

difference between the critical level and the closest adjacent saddle level. The adopted uniform 

slicing guarantees that all features having size greater than dp are detected. Features whose size is 

less than dp are discarded, except those that extend across a slicing plane. To make the filtering 

effect homogeneous, the contour behaviour is re-computed at a distance dp from the point q in the 

critical area, which has the maximum height variation within the region. In Figure 4 an example is 

given: the size of the feature (h) is smaller than dp and the maximum q disappears when the contour 

level c1 is replaced by c2. In this way all the features having size greater than dp are recognised and 

the smaller ones are discarded. 

 

Figure 4 The feature in the middle has size h which is less than the slicing step dp, hence it is discarded during 

the characterisation process. 

 

1.3.1. From critical areas to the Extended Reeb graph  

The generalised characterisation just described can be coded as an Extended Reeb Graph by simply 

extending the equivalence relation used in the Reeb graph. Let f:M*→R be the height function 

defined on the virtual closing M* of the surface M, and let [fmin,fmax] be an interval containing the 



variation interval of f on the surface M, and fmin < f1 <…< fh < fmax the height distribution of the 

contour levels C(M), which are supposed to be all non degenerate contours. We observe that the 

relations fmin < f1 and fh < fmax holds, because if fmin=f1 and fh=fmax the horizontal planes would be 

somewhere tangent to M and some contours would be degenerate. In addition, let I={(fmin, f1), (fi, 

fi+1), i=1…h-1, and (fh, fmax)} ∪ {fmin, f1,…fh, fmax} be the partition of the interval [fmin, fmax] provided 

by the set of the h+1 interior parts of [fmin, f1 ,…, fh, fmax] and the height values of the contour levels.  

Definition 3 

An extended Reeb equivalence between two points P, Q ∈ M* is given by the following conditions: 

- f(P), f(Q) belong to the same element of t ∈ I ; 

- P and Q belong to the same connected component of f -1(f(t)), t ∈ I . 

Therefore, by applying the notion of the quotient relation in definition 3, it follows that all the 

points belonging to a region R are Reeb-equivalent in the extended sense and they may therefore 

collapse into the same point of the quotient space. The quotient space obtained from such a relation 

is called Extended Reeb (ER) quotient space.Moreover the ER quotient space, which is an abstract 

sub-space of M* and is independent from the geometry, may be represented as a traditional graph 

which is called the Extended Reeb Graph (ERG). 

To represent the ER quotient space as a graph, the classes which are defined by points on contours 

are represented by connecting points, while all other classes are represented by normal points, 

simply called points. Connecting points are representative of contours and normal points are 

representative of regions. A point p representing a region R is adjacent through a connecting point 

to another point q  representing another region R' in the quotient space, and a normal point is  

adjacent to as many connecting points as the number of connected components of the boundary of 

the associated region. From this point of view, the image of a regular region of M* in the ER 

quotient space is adjacent only to two connecting points. Therefore, the connectivity changes of the 

graph representation are concentrated in the image of the critical areas, and they are equivalent to 

the standard Reeb graph representation which can be easily derived by merging the intermediate 

nodes representing regular areas into a single arc. After this merging step, the ERG simply consists 

of nodes representing critical areas and the associated connecting arcs. 

Finally, in the Reeb representation complex areas are distinguished from simple ones by labelling 

the graph nodes as macro-nodes in the former case, and nodes in the latter one; that is the macro-

nodes are those particular leaf nodes with only ingoing or, respectively, outgoing arcs and whose 

degree is at least two. 



Starting from the surface characterisation previously defined and considering the introduction of 

the global virtual minimum, VM, the relationship among the critical points expressed in the Euler 

formula may be recovered also for the critical areas, as shown in [1] and [5]. The generalised Euler 

formula has to take into account the number of simple as well as complex critical areas. For each 

complex critical area, ca, we consider the number mca = ib-1, where ib represents the number of 

inner boundary components of ca. Then, if Pmc is the sum of all the contributions of the complex 

areas, the Euler formula in section 1.2 becomes M - p + m - Pmc + VM = χ. The contribution of the 

i-th critical area is provided by 2-bbi, where bbi is the number of its boundary components and the 

Euler relation: VM + Σ(2-bbi) = χ. Because the number of boundary components of such a critical 

area corresponds to the degree of the node in the Reeb graph G, the previous relation can be re-

written as Σ(2-δi) = χ-VM, where δi is the degree of the i-th node of G. Considering that the sum of 

all the node degrees is twice the number of arcs E of G (as each arc is computed in the sum for two 

nodes) and the contribution of VM is one, the previous relation can be further expressed by: 2(N-

E)=χ-1, where N represents the number of critical areas of M. 

1.4. ERG extraction 

As shown in section 1.3, the quotient space defined by the extended Reeb equivalence relation can 

be represented in terms of a graph. Through the extended definition of critical areas proposed in 

section 1.3.1, the application domain can be extended to generic continuous surfaces, without any 

artefacts [4]. Then, the approach proposed in this chapter is actually not an extension of the Reeb 

graph itself, but rather a full application of its definition in the discrete domain, which does not 

require the height function to be Morse. 

In this section, a short description of the algorithm for characterising a triangle mesh is given. The 

extraction and classification of critical areas is done first by computing and inserting a suitable 

number of contours into the triangle mesh, and second by reconstructing and classifying the 

boundaries of the regions delimited by the inserted contours, according to the scheme proposed in 

section 1.3.1.  

The computation and the insertion of the contours into the mesh is done in a single step. The 

contour levels C(M) inserted into the mesh model are used as constraints for the region detection 

process, which uses a region-growing strategy. The insertion of a contour C into M is computed as 

follows: given a slicing plane π, a seed point p ∈ C is computed by selecting an edge e, which 

properly intersects π, that is e does not belong to π nor intersects it in a vertex. C is extracted by 

starting from p and moving horizontally by adjacency on the mesh until either p or the surface 

boundary is reached. If the surface boundary has been reached, C is an open contour and the 



algorithm restarts from p in the opposite direction until the surface boundary is reached again. If the 

points of C are not vertices of the mesh, they are inserted into the mesh. The mesh is locally re-

triangulated in order to obtain a valid mesh, and the contours are inserted into the mesh as 

constrained edges. This process stops when all the planes have been considered. This procedure 

guarantees that degenerated contours as points, lines, etc. are not taken into account. Then, the 

intersections of the model with the slicing planes are computed and stored as a set of connected 

components, which can be also open, in correspondence of the surface boundary intersection. 

The insertion of C(M) decomposes the triangle mesh into a set of regions, each bounded by C(M) 

elements and mesh boundary edges. These regions are detected by labelling all triangles in the 

mesh, with a region-growing process which propagates the label from a triangle to its adjacent ones 

without crossing any constraint. At the end of this labelling phase, all triangles having the same 

label identify a region. Then, the boundary of each region is detected and the associated outgoing 

directions are classified. Starting from any edge of the region boundary, the associated connected 

component is fully traced using edge-vertex adjacency. If the component is closed, then there is 

only one outgoing direction, which can be easily classified by checking the elevation of any vertex 

inside the adjacent region. If the traced component is open, then the tracing has to continue also 

along the mesh boundary, and the whole component will consist of a sequence of open contours 

and boundary parts. The tracing can be done since all triangles are labelled with the region label. In 

this case, each part of the boundary component defines an outgoing direction which has to be 

classified. Finally, the number of boundary components bb and their classification allow 

distinguishing between simple and complex critical areas. 

According to the graph representation of the extended Reeb's quotient space, each node of the 

graph corresponds to a critical area; in particular, when the critical region recognised as a 

maximum/minimum area is complex, a macro-node is defined, with as many arcs as the inner 

components of the critical region. Since each arc corresponds to a connected component of the 

manifold between two critical areas, the Reeb graph extraction is based on tracking the evolution of 

contour lines.  

When the critical areas have been recognised, the ERG is initialised by creating the node 

corresponding to the virtual minimum, VM. The VM is connected to the saddle having the minimum 

elevation and external to each macro-node. If such a saddle does not exist, the VM is connected to 

the nearest (in terms of geodesic distance) complex maximum area, otherwise, if there are not 

complex maxima, the ERG is a trivial graph connecting the VM to the only simple maximum 

existing and the surface is topologically equivalent to a sphere [15]. 



Our algorithm for the extraction of the ERG runs in two steps: first, the arcs between minima (resp. 

maxima) and saddles are inserted, then the other ones are detected. In the following, a construction 

algorithm is described using a C pseudo-code: 

 
ERG_Construction(N,A)  

/*The ERG is defined by the set of nodes, N, and of arcs, A*/ 

{ N=CriticalAreasRecognition(tin, contours);  

  /* Identify critical areas and initialise the virtual minimum */ 

OrderAreas(N);                  /* Order the Critical Areas by elevation      */ 

ConnectVirtualMinimum(N);              /*Create a virtual minimum and connect it 

              to the node the most appropriate */ 

ExpandMaxima&Minima(N,A);                               /*Leaf arc extraction */ 

for (each node in N) 

   {if (IsGrowingArea(node)) 

      {for ( each non visited growing direction node) 

         {while ((not(findBoundarySurface)) or (not(findOtherCriticalArea))) 

           ExpandToUpperLevel(node);  

           if (R=OtherAreaReached) 

              ConnectWithArc(node, R);  

         }                                                         /* end for */ 

      }                                                             /* end if */ 

   }                                                               /* end for */ 

 

The function ‘ExpandMaxima&Minima(N)’ connects all the maxima and minima to their nearest 

(in terms of region expansion) critical area and extracts a subset of Reeb arcs, while the function 

‘IsGrowingArea(node)’ returns a Boolean value, which is TRUE if the critical area has at least one 

growing direction that has not been visited yet. In Figure 5 the main steps of the ERG extraction 

process are depicted; Figure 5(a) represents how the maxima (resp. minima) are expanded until 

other critical areas are reached and the corresponding graph representation, while Figure 5(b) 

shows how the algorithm works for completing the area expansion process. 

 

Figure 5 Two steps in the pipeline of the ERG extraction. 

 



Some results of our ERG extraction for real terrains are provided in Figure 6. The nodes of the ERG 

representation are coloured according to the meaning of the corresponding critical areas into the 

models. In particular, the maxima are depicted in red, the minima in blue and the saddles in green, 

while the virtual minimum is represented in yellow. Moreover, in Figure 6 we show the simplified 

models obtained considering only the mesh vertices, which form the boundary of all the critical 

areas of the models. The original models of Figure 6(a,c) have 160000 and 129600 vertices, 

respectively, while the simplified ones in Figure 7 have resp. 19200 and 26200 vertices; it is 

important to point out that the simplification provided by the ERG mainly depends on the 

topological complexity of the models rather than on the number of the original vertices.  

 

Figure 6 Two terrain models (a) and (c) and their Reeb graph representations (b) and (d). The models in (a) and 

(c) are freely available at http.//www. geographx.co.nz/. 

 

Figure 7 Examples of simplification obtained by considering only the boundaries of critical areas. In (a) the 

simplified model of the terrain given in Figure 6(a), and in (b) that of Figure 6(c).  



1.4.1. Computational complexity 

The computational cost of the whole algorithm for the ERG extraction is given by the sum of the 

cost of its single subparts, that is the insertion of contour levels into the mesh, the extraction of the 

critical areas and the final expansion process. 

Given the surface mesh, the insertion of the contour levels C(M) depends on both the number of 

vertices of the original triangulation, n, and the number m of the vertices of C(M). Because the 

number of edges and triangles has the same order as the number of vertices, checking the edge-to-

plane intersection requires O(max(m,nlog(n))) operations. In fact, the edges of the mesh are sorted 

in O(nlog(n)) operations, while O(max(m,n)) is the number of intersection tests. Finally the 

insertion of the whole set of constraints requires O(m) edge splits. 

With regard to the computational complexity of the characterisation process, the recognition of 

critical areas is linear in the number of mesh triangles, then it requires O(n+m) operations, because 

the number of triangles in the constrained mesh has the same order of the sum of original vertices 

and the constrained ones. Also during the arc completion step, the triangles are processed once and 

the complexity still is O(n+m), so that the total computational cost of the ERG extraction mainly 

depends on the insertion of contours into the mesh. Therefore, the whole process, starting from a 

generic triangulation, requires O(max(m+n, nlog(n))) operations. Finally, we observe that, if we 

consider a generic triangle mesh, the average size of m is O(nlog(n)) even if in the worst case, m 

could be O(n2). 

1.5. Discussion and final remarks 

The generalised characterisation and the ERG coding provide a compact representation of the main 

features of a terrain surface, which is effectively represented as a configuration of hills and dales. 

With regard to the feature extraction step, the mesh characterisation based on the classical height 

comparison at mesh vertices, as classically proposed in [3], [7], [11] and [20], can be recovered 

also through our method. It is sufficient, indeed, to slice the mesh in correspondence of the 

midpoint of each edge; in this way all the original mesh vertices would lie in a separate region and 

the characterisation obtained through the mesh contouring would be equivalent to consider the star 

region of each vertex.  

Finding the best compromise between the effectiveness of feature extraction and the number of 

slicing planes is the most critical point of the method. A first solution is to characterise the mesh as 

proposed in [7] and [11], by slicing the mesh with planes placed at optimal positions: one plane 

directly below (resp. above) maxima (resp. minima), and two planes for saddles, one above and one 



below. In this case the number of slicing planes considerably decreases but the number of features 

does not, and the results would still be sensitive to small variations of the vertex elevation.  

Using the uniform slicing, the surface shape is described by the topological coding of its features at 

a fixed resolution dp. In many cases, however, a description at different scales could be more 

effective. This could be achieved by adopting a multi-resolution slicing process of the mesh as 

proposed in [12]: a sequence of Reeb graphs can be extracted by halving the distance interval 

between the slicing planes until a threshold defined by the user is reached. At each step, new nodes 

and arcs might be inserted into the graph as shown in Figure 8, but there is a hierarchical relation 

between the nodes of the current graph and the previous one [1].  

 

Figure 8 Reeb graph variation when halving the distance among the sections. 

 

In our setting, a multi-resolution ERG extraction can be implemented by iteratively halving the 

height interval [fmin, fmax]; for example the graphs proposed in Figure 6 have been obtained with 32 

subdivisions of the interval [fmin, fmax]. The power of this approach is clear: the surface shape can be 

processed at different levels of detail and the estimation of its features is automatically provided. 

In addition, we notice that adopting the mesh characterisation approach based on the neighbours of 

each vertex, the Reeb graph is equivalent to that provided by the contour tree, as proposed in [6] 

and [21]. In fact, both structures have a common root in Maxwell's paper [14] and pursue the aim of 

organizing the contour levels of a two-dimensional surface in a systematic and topologically correct 

way. However, the contour trees have been proposed only for scalar fields, while the Reeb graphs 

have been studied for generic two-manifold and successfully applied to arbitrary complex surfaces; 

as an example our approach works also on terrain surfaces with vertical walls and cavities. 

Considering simple Morse functions, i.e. functions whose critical points are non-degenerate and not 

at the same level, , Reeb graphs and surface networks may be easily compared: the Reeb graph is a 

subgraph of the surface network, at least for the arcs not involving the boundary. An algorithm for 

the extraction of Reeb graphs from surface networks has been, for example, proposed in [20]. Both 

graphs code the topological structure of a surface, with surface networks giving a surface-oriented 

view, while Reeb graphs giving a skeleton-like and volume-oriented description. In Figure 9 the 

surface network of a terrain represented by contours is compared with the corresponding Reeb 



graph; all the arcs of the surface network coming from the outside of the surface boundary originate 

from a virtual minimum, which is depicted for the Reeb graph structure. 

 
Figure 9 The surface network structure (a) and the Reeb graph (b) of the same terrain model. 

 

In the generalised version presented in this chapter, surface networks and ERG cannot be directly 

compared. Surface networks obviously fail if degenerate critical points exist, and, to our 

knowledge, there is no way to automatically filter the resulting features during the network 

delineation process. Conversely, the ERG construction process is stable and it provides a simplified 

configuration of the terrain features, which easily and efficiently supports the minimal rendering of 

large terrain data. 
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